Элективный курс по математике для классов спортивно-оборонного профиля
В настоящее время невозможно представить спорт и физическую культуру без науки. Правильно организованное физическое воспитание школьника, способствующее укреплению его здоровья, эффективная тренировка спортсмена, результатом которой является рост спортивных рекордов, - это все строится на научных основах.
Цель данной работы – изложение основных методов математической статистики, теории ве
роятности в доступной для студентов физических факультетов. То есть студентов знающих математику в объеме средней школы.
Наука – это точное знание, собирающее факты, и во всех них присутствуют цифры. При оценке успеваемости учеников учителем, при подсчитывании результатов на соревнованиях и т.д. при всем этом оперируют цифрами и в этом уже есть зачатки науки. Еще более научным является сбор материала, для того чтобы выявить какую-нибудь закономерность, систему, например, при систематизации спортивных рекордов в беге, плавании, конькобежном спорте, привело к установлению общего математического закона. Подсчет количества килограммов, поднимаемых тяжелоатлетами на тренировках, и сопоставление его со спортивными достижениями позволили определить тренировочную нагрузку, которая дает наилучший результат. При анализе индивидуальной тренировочной нагрузки элементами исследуемой совокупности могут быть отдельные значения интенсивности или объема нагрузки, зарегистрированные у конкретного спортсмена в различные периоды времени. Каждый элемент совокупности может обладать рядом признаков, при этом одни признаки могут быть однородными, а другие могут изменяться. Например, элементами совокупности могут быть спортсмены – представители одного вида спорта, одинаковой квалификации, одинакового возраста, но различными могут быть показатели роста, веса, скорости движения и т.д.
Предметом изучения как раз и являются изменяющиеся признаки. Значение, принимаемое данной величиной, в каждом случае зависит от ряда факторов, которые обычно заранее не известны. Закономерности присущие подобным величинам, получили название случайных, изучаются теорией вероятности и математической статистики.
Математическая статистика устанавливает перспективность спортсменов, условия более благоприятные для тренировок и их эффективность. Также статистика помогает сделать объективные и научно обоснованные выводы при анализе спортивной деятельности.
В нашей жизни часто приходится иметь дело со случайными явлениями, то есть ситуациями, исход которых нельзя точно предвидеть, например мы не можем точно сказать при подбрасывании монеты упадет она вверх гербом или цифрой. Аналогично не можем точно сказать, сколько очков выбьет стрелок на соревнованиях. Говоря о случайных событиях в нашем сознании возникает представление о вероятности явления.
Под испытанием в теории вероятностей принято принимать наблюдение какого-либо явления при соблюдении определенного набора условий, который каждый раз должен выполняться при повторении данного испытания. Если то же самое испытание производиться при другом наборе условии, то считается, что это уже другое испытание.
Результаты испытаний можно охарактеризовать качественно и количественно.
Качественная характеристика заключается в регистрации какого-либо явления, которое может наблюдаться или нет при данном испытании. Любое из явлений называется событием.
Событие бывает:
Достоверное (всегда происходит в результате испытания);
Невозможное (никогда не происходит);
Случайное (может произойти или не произойти в результате испытания).
Например: При подбрасывании кубика невозможное событие - кубик станет на ребро, случайное событие - выпадение какой либо грани.
Когда мы говорим о соблюдении набора условий данного испытания, мы имеем в виду постоянство значений всех факторов, контролируемых в данном испытании. Но при этом может быть большое количество неконтролируемых факторов (например, погода, ветер и т.д.), которые трудно или невозможно учесть. Следовательно, значение неконтролируемых факторов могут быть различными при каждом повторении испытания, поэтому результаты испытания оказываются случайными. Событие может произойти или не произойти.
Теория вероятностей рассматривает именно такие события, при этом предполагается, что испытание может быть повторено любое количество раз.
Например, выполнение штрафного броска в баскетболе есть испытание, а попадание в кольцо – событие. Другой пример события – это выпадение определенного числа очков при бросании игральной кости.
В теории вероятности события обозначаются прописными (заглавными) латинскими буквами: A, B, C, D…
Количественная характеристика испытания выражает значения некоторых величин, которыми интересуются при данном испытании (например, число подтягиваний, время на беговой дистанции). До испытания нельзя сказать чему будет равна данная величина, поэтому она называется случайной.
Задачи, использующие формулу сложения и умножения
вероятностей
В этом разделе мы рассмотрим основные правила операций над различными событиями. Дадим определение вероятности и узнаем, как можно применять полученные знания в спортивной области.
Операции над событиями.
Сумма
Событие С называется суммой А+В, которое представляет собой событие, состоящее из появлении хотя бы одного из событий А и В. Сумму также иногда называют объединением событий А и В и обозначают АВ.
|
2. Произведение
Событие C называется произведением A и B, если оно состоит из всех событий, входящих и в A, и в B. Произведение также называют пересечением и обозначается как АВ.
3.Разность
Разностью событий A-B называется событие C, состоящее из всех э событий, входящих в A, но не входящих в B.
4.Противоположное
Событие называется противоположным событию A, называется событие, состоящее в непоявлении события А. Обозначается противоположное событие символом .
Пример: Противоположными событиями являются промах и попадание при выстреле, или выпадении герба или цифры при одном подбрасывании монеты.
5.События A и B называются несовместными, если они никогда не могут произойти в результате одного испытания.
Пример: При одном подбрасывании монеты никогда не выпадет одновременно и орел и цифра.
Другие рефераты на тему «Педагогика»:
- Роль развивающей среды в воспитании в ДОУ детей 2-3-х летнего возраста
- Развивающее и традиционное обучение
- Влияние стиля педагогического общения на психическое развитие младшего школьника
- Методические особенности изучения темы "Сила тяжести и вес тела"
- Построение графика квадратного уравнения с помощью электронной таблицы
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения