Методы решения задач на построение

Практические занятия по теме «Методы решения задач на построение»

Занятие 1

Тема: Основы конструктивной геометрии

Цели: 1. Ознакомление с основными требованиями конструктивной геометрии;

Формирование системы аксиом инструментов построения: линейки, циркуля, двусторонней линейки, прямого угла.

Оборудование:

Рассмотренные выше инструменты;

Плакаты, отражающие основны

е свойства конструктивной геометрии.

Методы и средства:

Лекция с включённой беседой;

Параллельная работа учителя у доски, а учащихся в тетради;

Самостоятельная работа учащихся в тетради.

План-коспект занятия:

Организационный момент.

Вступительная беседа и объяснение нового материала.

Преподаватель: Данные занятия затрагивают основные моменты очень интересного раздела геометрии, который называется конструктивная геометрия. Как раздел общей геометрии, она изучает геометрические построения. В конструктивной геометрии существуют основные требования.

Каждая данная фигура построена;

Если построены две или более фигуры, то построено их соединение;

Если две фигуры построены, то можно установить является ли их пересечение пустым множеством;

Если разность двух фигур не является пустым множеством, то эта разность построена;

Можно построить точку, заведомо принадлежащую или не принадлежащую построенной фигуре.

Преподаватель: Каждая задача на построение состоит из требования построить ту или иную фигуру при помощи данных соотношений между элементами искомой фигуры и элементами данной фигуры, используя данный набор инструментов. Мы будем рассматривать построения при помощи циркуля и линейки.

Таким образом, каждая построенная фигура, удовлетворяющая требуемым условиям задачи, называется решением задачи. Найти решение задачи на построение, – значит, свести её к конечному числу из некоторых элементарных построений, то есть указать пошаговую последовательность построений, после выполнения которых мы получим искомую фигуру.

Решить задачу на построение, – значит найти все её решения.

Преподаватель: На уроках геометрии вы уже выполняли некоторые простые задачи на построение. Давайте вспомним какие.

Учащиеся: Деление отрезка пополам, деление угла пополам, построение треугольника по двум сторонам и углу между ними, по трём сторонам, подвум углам и прилежащей стороне.

Преподаватель: Правильно. Попытайтесь самостоятельно выполнить эти построения.

Каждому ученику предлагается задача на построение.

Предлагаемые задачи:

Разделите отрезок пополам.

Разделите угол пополам.

Постройте треугольник по двум сторонам и углу между ними.

Постройте треугольник по трём сторонам.

Постройте треугольник по двум углам и прилежащей стороне.

Домашнее задание: Выполнить нерассмотренные задачи на построение.

Занятие 2

Тема: Основы конструктивной геометрии. Основные геометрические построения.

Цели: 1. Формирование представлений о сущности решения задачи на построение;

2. Закрепление умений решать основные задачи на построение (14 задач).

Оборудование: Циркуль, линейка.

Методы и средства:

Лекция с включённой беседой;

Параллельная работа учителя у доски, а учащихся в тетради;

Самостоятельная работа учащихся в тетради.

План-конспект занятия:

Организационный момент.

Проверка домашнего задания: на карточках дать по одному основному построению.

Вопросы:

Что значит найти решение задачи на построение?

Что значит решить задачу?

Какие элементарные построения вы знаете?

Какие основные задачи на построение вы знаете?

Объяснение нового материала:

Преподаватель: На прошлом занятии мы решали с вами некоторые простейшие задачи на построение, но в конструктивной геометрии существуют гораздо более сложные задачи, решение которых не видно из условий сразу. Для этого решение задачи разбивают на этапы. Может быть, вы помните – какие этапы включает в себя задача на построение?

Ученики: Анализ и построение.

Преподаватель: Правильно, но вы перечислили не все этапы.

1 этап: Анализ. Это поиск способа решения задачи на построение. На этапе анализа мы предполагаем, что искомая фигура построена и отмечаем из этого наброска все зависимости, отношения между элементами этой фигуры.

Пусть, например, надо построить треугольник по основанию и медиане и высоте, проведённых к этому основанию.

Анализ: Допустим, что такой треугольник построен, где BD = m,

BE = h. Заметим, что треугольник АВС легко будет построить, если будет известен треугольник BDE. Отложив по обе стороны от точки Е отрезки, равные половине основания(данного), получим искомый треугольник АВС. Но ведь треугольник BDE состоит из известного (данного нам) катета и гипотенузы. А такой треугольник строить мы умеем и сможем его построить. На этом рассуждения на этапе анализа закончены, можно приступать к построению.

На этапе построения расписывается поэтапно каждое построение. Вернёмся к нашему примеру и выполним построения в следующей последовательности:

Строим ∆ BDE по гипотенузе m и катету h.

По обе стороны то точки на продолжении прямой откладываем отрезки, равные а/2 (ЕС = а/2; EA = a/2);

∆АВС – искомый.

Дано:

Следующим этапом решения задачи является доказательство того, что построенная нами фигура удовлетворяет всем поставленным нами условиям.

Доказательство: 1. АЕ = ЕС по построению, ВЕ – медиана;

2. ∆ BDE – прямоугольный по построению, а BD – высота к основанию ВС;

BE = m, BD = h, AC = a.

После доказатества переходим к исследованию. При построении обычно ограничиваются нахождением какого-либо решения. Но ведь мы знаем, что решить задачу – это что значит?

Ученики: Это значит найти все её решения.

Преподаватель: Обратите внимание на пример нашей задачи. Как вы думаете, сколько решений возможно в данной задаче, если не учитывать различие в расположении на плоскости?

Ученики: Единсвенное решение.

Преподаватель: Итак, при решении задачи на построение принято действовать по схеме:

Анализ;

Построение;

Доказательство;

Исследование.

3. Закрепление: решение несложных задач по схеме.

Задача 1

Через точку А, лежащую в середине угла провести прямую так, чтобы точка А была серединой отрезка, отсекаемого от прямой сторонами угла.

Анализ. Дан угол А и точка внутри его. Точка будет удовлетворять условиям, если она будет лежать на пересечении диагоналей параллелограмма. Как сделать точку А точкой пересечения диагоналей?

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы