Методы решения задач на построение
С точки зрения чертежной практики последнее условие отражает определенные требования к качеству выполненных чертежей. Так, например, если построены некоторая окружность и точка, то должно быть ясно, лежит ли точка на окружности или нет. Если построены две окружности, то можно сказать, имеют ли они общие точки или нет.
Обратимся еще раз к рисунку 4. Пусть известно, что построены отрезки АС и
ВD. В этом случае мы будем также считать построенным и отрезок ВС, который является пересечением этих двух отрезков. Если начерчены две пересекающиеся окружности, то мы будем считать построенной также пару точек их пересечения. Такого рода соглашения вы ражаются следующим образом:
6. Если пересечение двух построенных фигур не пусто, то оно построено.
В следующих трех основных требованиях говорится о возможностях построения отдельных точек.
7. Можно построить любое конечное число общих точек двух построенных фигур, если такие точки существуют.
8. Можно построить точку, заведомо принадлежащую построенной фигуре.
9. Можно построить точку, заведомо принадлежащую построенной фигуре.
Задача на построение
Задачей на построение называется предложение, указывающее, по каким данным, какими инструментами, какую геометрическую фигуру требуется построить (начертить на плоскости) так, чтобы эта фигура удовлетворяла определённым условиям.
Решить задачу на построение с помощью циркуля и линейки – значит свести её к совокупности пяти элементарных построений, которые заранее считаются выполнимыми. Перечислим их.
1. Если построены две точки А и В, то построена прямая АВ, их соединяющая, а также отрезок АВ и любой из лучей АВ и ВА (аксиома линейки).
2. Если построена точка О и отрезок АВ, то построена окружность с центром в точке О и радиусом АВ, а также любая из дуг этой окружности.
3. Если построены две прямые, то построена точка их пересечения (если она существует).
4. Если построена прямая и окружность, то построена любая из точек их пересечения (если она существует).
5. Если построены две окружности, то построена любая из точек их пересечения (если она существует).
Сведение решения каждой задачи к элементарным построениям делает решение громоздким. Поэтому часто решение задачи сводят к так называемым основным построениям. Выбор некоторых построений в качестве основных в известной степени произволен. Например, в качестве основных построений можно рассмотреть следующие задачи: деление данного угла пополам; построение отрезка, равного данному; построение угла, равного данному; построение параллельной прямой, построение перпендикулярной прямой, деление отрезка в данном отношении; построение треугольника по трём сторонам, по двум сторонам и углу между ними, по стороне и двум прилежащим к ней углам; построение прямоугольного треугольника по гипотенузе и катету.
Решить задачу на построение – значит найти все её решения.
Последнее определение требует некоторых разъяснений.
Фигуры, удовлетворяющие условию задачи, могут различаться как формой так и размерами, так положением на плоскости. Различия в положении на плоскости принимаются или не принимаются в расчёт в зависимости от формулировки самой задачи на построение, а именно в зависимости от того, предусматривает или не предусматривает условие задачи определённое положение искомой фигуры относительно каких-либо данных фигур. Поясним это примерами.
Рассмотрим следующую простейшую задачу: построить треугольник по трём сторонам и углу между ними. Точный смысл этой задачи состоит в следующем: построить треугольник так, чтобы две стороны его были соответственно равны двум данным отрезкам, а угол между ними был равен данному углу. Здесь искомая фигура (треугольник) связана с данными фигурами (два отрезка и угол) только соотношениями равенства, расположение же искомого треугольника относительно данных фигур безразлично. В этом случае легко построить треугольник АВС, удовлетворяющий условию задачи. Все треугольники, равные треугольнику АВС, также удовлетворяют условию поставленной задачи. Однако нет никакого смысла рассматривать эти треугольники как различные решения данной задачи, ибо они отличаются один от другого только положением на плоскости, о чем в условии задачи ничего не сказано. Будем поэтому считать, что задача имеет единственное решение.
Итак, если условие задачи не предусматривает определённого расположения искомой фигуры относительно данных фигур, то условимся искать только все неравные между собой фигуры, удовлетворяющие условию задачи. Можно сказать, что задачи этого рода решаются «с точностью до равенства». Это означает, что задача считается решённой, если: 1) Построено некоторое число неравных между собой фигур Ф1, Ф2, … Фn, удовлетворяющие условиям задачи, и 2) доказано, что всякая фигура, удовлетворяющая условиям задачи, равна одной из этих фигур. При этом считается, что задача имеет n различных решений.
Рассмотрим теперь задачу несколько иного содержания: построить треугольник так, чтобы одной его стороной служил данный отрезок ВС, другая сторона была равна другому данному отрезку l, а угол между ними был равен данному углу α.
В этом случае условие задачи предусматривает определённое расположение искомого треугольника относительно одной из данных фигур (именно относительно отрезка ВС). В связи с этим мы иначе смотрим на вопрос о построении всех решений этой задачи. Как видно из рисунка 5, может существовать до четырёх треугольников, удовлетворяющих условию этой задачи. Они равны между собой, но по разному расположены относительно данной фигуры ВС. В этом случае полное решение задачи предусматривает построение всех этих треугольников. Считается, что задача имеет до четырёх различных решений, различающихся своим расположением относительно данной фигуры.
Итак, если условие задачи предусматривает определённое расположение искомой фигуры относительно какой-либо данной фигуры, то полное решение состоит в построении всех фигур, удовлетворяющих условию задачи (если такие фигуры существуют в конечном числе.
Методика решения геометрической задачи на построение
Вопрос о выборе той или иной схемы решения конструктивной задачи является чисто методическим вопросом.
Решение геометрической задачи является вполне доброкачественным, если оно проведено, например, последующей схеме:
Устанавливается конечное число случаев, исчерпывающих все возможности в выборе данных.
Для каждого случая дается ответ на вопрос, имеет ли задача решение и сколько.
Для каждого случая, когда задача имеет решение, дается способ нахождения (с помощью данных геометрических инструментов) каждого из возможных решений или устанавливается, что оно не может быть получено данными средствами.
Этой схемы придерживаются в научных статьях и монографиях; однако она мало пригодна для учебных целей, особенно в условиях средней школы.
При решении каждой сколько-нибудь сложной задачи на построение возникает вопрос о том, как нужно рассуждать, чтобы разыскать способ решения задачи, чтобы получить все решения задачи, чтобы выяснить условия возможности решения задачи и т.п. Поэтому при решении конструктивных задач в учебных условиях рекомендуется пользоваться известной схемой решения, состоящей из следующих четырех этапов: 1) анализ; 2) построение; 3) доказательство; 4) исследование.
Другие рефераты на тему «Педагогика»:
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения