Методы решения задач на построение
Пример 2. Построить четырёхугольник, зная его углы и противоположные
стороны.
Анализ. Положим, что в четырёхугольнике АВСD стороны BC и AD и углы А, В, С имеют данные значения. Перенесём BC параллельно самой себе в AE, тогда составится треугольник AED, в котором известны две стороны AE и AD и угол EAD, равный разности двух известных углов, данного угла BAD и угла FBC, смежного с данным
CBA. Такой треугольник легко построить. Затем легко провести прямые EC и CD, потому что первая образует известный угол с прямой EA (угол CEG равен углу FBC); а вторая образует известный угол CDA со стороною AD. После этого остаётся только провести CB параллельно EA и решение очевидно.
Построение.
Строим треугольник АЕD;
ЕС;
СD;
СВ║ЕА.
Исследование.
Эта задача имеет только одно решение: углы и отношение двух противоположных сторон четырёхугольника вполне определяют его вид.
Метод подобия
Основная идея метода подобия состоит в следующем:
Сначала строят фигуру, подобную искомой так, чтобы она удовлетворяла всем условиям задачи, кроме одного. Затем строят уже искомую фигуру, подобную искомой и удовлетворяющую опущенному требованию.
Метод подобия находит применение обычно в случаях, когда среди данных лишь одно является отрезком, а все остальные данные-либо углы, либо отношения отрезков.
Обычно целесообразно вспомогательную фигуру строить так, чтобы она была подобна не только искомой, но и подобно расположена с ней. Успех решения зависит в этих случаях от выбора центра подобия.
При решении задач на построение методом подобия часто воспользоваться следующим замечанием. Если две фигуры подобны, то коэффициент подобия равен отношению любых двух соответствующих отрезков. Если отрезкам a, b, c,… фигуры Ф соответствуют отрезки a1, b1, c1,… подобной фигуры Ф1, то коэффициент подобия равен также отношениям:
Пример 1. Дан Ð АВС и внутри его точка М. Найти на стороне ВС точку Х, расположенную на одинаковом расстоянии от прямой АВ и от точки М.
Анализ. Пусть точка Х найдена так, что перпендикуляр ХY = МХ. Задача сводится к построению фигуры YХМ. Представим целый ряд фигур, подобных искомой фигуре. Достаточно построить одну из этих фигур, например РКN, так как останется провести из точки М прямую параллельную КР и задача будет решена.
Для построения фигуры РКN замечаем, что В есть центр подобия искомых фигур, и поэтому точки М, H, К и В лежат на одной прямой ВМ и PN ^ АВ, PN = BN, положение же точки Р произвольно. Поэтому для построения фигуры PKN надо в произвольной точке Р восстановить PN ^ АВ, из центра N описать радиусом PN дугу, которая пересечёт ВМ в точке К. Проводя МХ ║КN, можно определить искомую точку Х.
Построение.
ЕG ^ AB;
H = ω (G, EG)ÇBM;
MX ║ HG;
X = BCÇMX.
Доказательство. Опустив перпендикуляр ХY, из подобия треугольников находим МХ: GH = BX: BN = XY: GE, откуда МХ: GH = =XY: GE, но так как по построению HG = GE, то МХ = YX.
Исследование. Задача всегда возможна и имеет два решения, так как дуга из центра G встречает ВМ всегда в двух точках.
Пример 2. Построить треугольник АВС, если известно отношение АВ: ВС, Ð АВС и радиус вписанной окружности.
Анализ. Так как в искомом треугольнике известен угол и отношение сторон этого угла, то, оставив остальные условия, построим треугольник, подобный искомому. Для этого на сторонах данного угла отложим BD, равную m каких-нибудь равных частей, и ВЕ, равную n таких же частей, и соединим точки D и E. Тогда искомый треугольник и треугольник DBE подобны, так как они имеют по равному углу, заключённому между пропорциональными сторонами. Проводя в угле АВС отрезки, параллельные DE, будем получать треугольники, подобные искомому, но с различными радиусами вписанных окружностей; из всех этих треугольников надо выбрать один, у которого радиус вписанной окружности равен r. Определив центр О, легко построить сам треугольник.
Построение.
1. OF ^ DE;
OG = r;
Через G проводим AC ║ DE;
∆АВС – искомый.
Доказательство. Следует из построения.
Исследование. Возможное решение всегда одно.
Метод геометрического места точек
Геометрическим местом точек называется совокупность точек, обладающих свойствами, исключительно им принадлежащими. Если задача приводится к определению точки, то можно отбросить одно из условий, которому эта точка должна удовлетворять; тогда искомая точка станет способна принять бесчисленное количество последовательных положений, и все эти положения составят геометрическое место точек, обладающих всеми требуемыми свойствами, кроме отброшенного. Фигура этого геометрического места чаще бывает нам заранее известна; в противном случае её надо определить вспомогательными построениями. Затем, приняв отброшенное условие и откинув какое-либо другое условие задачи, мы вновь увидим, что искомая точка станет способна принять бесчисленное множество новых положений, образующих новое геометрическое место. Определим фигуру этого нового геометрического места, если она нам неизвестна. Тогда искомая точка должна лежать и на первом и на втором геометрическом месте, а потому определяется их пересечением.
Иногда для определения точки достаточно построить одно геометрическое место, потому что другое дано в условии задачи. Если же искомая точка подчинена таким условиям, которые все в совокупности определяют только одно геометрическое место, то задача становится неопределённой.
Отсюда видно, как важно знать различные геометрические места. Знание геометрических мест иногда позволяет сразу видеть, где находится неизвестная точка.
Рассмотрим примеры.
Пример 1. Постройте треугольник, если заданы сторона, прилежащий к ней угол и сумма двух других сторон.
Анализ. Пусть ∆АВС уже построен, тогда положение вершин В иС можно считать известным. Остаётся найти вершину А. Выясним свойства точки А. Во-первых, точка А принадлежит лучу (BA), так как дан угол АВС, во-вторых, точка А является вершиной ломанной, состоящей из двух звеньев, сумма которых равна длине данного отрезка, являющегося суммой АВ и АС сторон искомого треугольника.
На продолжении стороны ВА за точку А отложим отрезок АА1, равный отрезку АС. Теперь можно построить треугольник А1ВС по двум сторонам и углу между ними. В равнобедренном (по построению) треугольнике А1АС серединный перпендикуляр к стороне А1С пересечёт луч ВА1 в точке А.
Построение.
построить ∆ВА1С по сторонам ВС и ВА1 = АВ + АС и углу между ними;
провести серединный перпендикуляр к стороне А1С;
найти точку пересечения луча (BA) и построенного серединного перпендикуляра. Точка пересечения и будет искомой вершиной А.
Доказательство. В построенном ∆АВС сторона ВС, сумма сторон АВ и АС, угол В-данные.
Исследование проведём по ходу построения. Треугольник ВА1С по двум сторонам и углу между ними можно построить единственным образом. Провести серединный перпендикуляр к отрезку А1С – тоже единственным образом. Точка пересечения луча (BA) и серединного перпендикуляра существует и она единственная. Пример 2. Постройте треугольник по стороне, разности углов при при этой стороне и сумме двух других сторон.
Другие рефераты на тему «Педагогика»:
- Совместная деятельность воспитателя и руководителя физического воспитания по формированию здорового образа жизни у старших дошкольников
- Методика профессионального обучения. Понятия профессии
- Методика проведения внеклассных мероприятий по профилактике детского дорожно-транспортного травматизма
- Развитие двигательных качеств на уроках физической культуры при изучении спортивных игр
- Взаимосвязь физического воспитания с другими сторонами воспитания
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения