Элементы истории математики при преподавании темы "Тригонометрия" в общеобразовательной школе
В настоящее время тригонометрию изучают в старших классах школы. Материал соответственно разделен на три части, которые изучаются в разные периоды времени обучения. Впервые тригонометрические выражения появляются в курсе планиметрии, после теоремы Пифагора или непосредственно перед ней. Используются они преимущественно для решения плоских треугольников. При этом отрабатываются первоначальные на
выки работы с таблицами тригонометрических функций. Ученики усваивают определения синуса, косинуса и тангенса острого угла.
Во второй раз тригонометрические функции определяются с помощью производящей окружности. Постепенно переходят к рассмотрению тригонометрических функций любого аргумента, выраженного в радианах, и соотношений между ними. Школьников обучают строить графики функций, рассматриваются некоторые свойства.
В третьей части изучаются решения тригонометрических уравнений и неравенств. Рассматривается приложение тригонометрических функций в физике при изучении гармонических колебаниях.
Формы использования исторического материала при преподавании на уроках
Говоря о формах изложения учащимся исторического материала, следует отметить, что нет и не может быть единого правила, руководствуясь, которым можно было бы ознакомить с элементами истории математики учащихся всех возрастов и классов. Форма изложения учащимся исторического материала в школе, в первую очередь, зависит от возрастных психологических особенностей учащихся. Основная форма введения исторического материала на уроках математики представляет собой сообщение о исторических сведениях. Не на каждом уроке, но все же достаточно часто и систематически следует делать исторические отступления и сравнения, а также приводить примеры решения исторических задач.
Необходимо упоминание о том, что приемы решения треугольников, конечно без соответствующих понятий и названий, встречались уже в древнейших цивилизациях. В качестве примеров здесь можно приводить задачи, связанные с солнечными часами и гомонами. Приведем вариант объяснения этих задач на уроке.
«Ученики, исторически тригонометрия изначально была теснее всего связана с астрономией, в которую долгое время входила в качестве самостоятельного раздела. Задачи, теперь относящиеся к геометрии, встречаются довольно рано в математике разных цивилизаций. Например, в Вавилоне не позднее второго века до н.э. решалась, следующая задача: Вычислить длину хорды S круга, исходя из величины диаметра d и высоты а сегмента, отсеченного этой хордой (рис.1). Задачи такого типа были связаны с использованием солнечных часов, основным элементом которых был так называемый гномон. При решении этой задачи использовали соотношение сторон прямоугольного треугольника, позднее получившее название теоремы Пифагора:
Древние вавилоняне умели вычислять высоту предмета по известной длине его тени. И в Египте и в Вавилоне пользовались гномоном для наблюдения за движением Солнца. Гномон - это вертикальный шест, который устанавливали на ровной горизонтальной площадке. Длина тени, отбрасываемая шестом, зависит от положения солнца и меняется в течение дня. Самой длинной тень будет в момент восхода Солнца. В полдень, когда длина тени наименьшая, ее направление совпадает с направлением истинного меридиана. Используя гномон, в древности решали многие практические задачи. Одной из них, была следующая: если L -длина гномона, то по длине l, отбрасываемой им в данный момент, определить угловую высоту h солнца над горизонтом.
По длине тени определяли точное время. Фиксировали линию, отбрасываемую концом гномона в течение дня, затем делили ее на двенадцать равных частей, получали дневные часы. Поскольку длина линии тени менялась в зависимости от продолжительности светового дня, то в разное время года была разная величина часа. Так, зимний час, был короче летнего. Изучая линию тени, люди научились определять момент солнцестояния, находить длину солнечного года и решать другие практические задачи.»
Учитель должен согласовать объем исторических сведений с материалом урока, он не должен перегружать урок, отвлекать учеников от изучаемой темы. Преподаватель математики на своих уроках сможет давать учащимся более углубленные и систематические знания о развитии изучаемых понятий.
История тригонометрии в гораздо большем объеме может излагаться на внеклассных занятиях Формы внеклассной работы могут быть самые различные: факультативные занятия, математические кружки, занятия по решению исторических задач, доклады, как самих учащихся, так и учителя, математические вечера и викторины, выпуск стенных газет, ведение исторического календаря и т.п Следует отметить, что при занятиях в математическом кружке учащихся смогут подготовить самостоятельные выступления лишь по тем вопросам истории, которые связаны с изучением частных вопросов математики, а не касаются более широких, обобщающих тем. Учащиеся под руководством преподавателя могут разработать доклады и подготовить выступления о деятельности какого-либо математика, или же, предварительно образовав группу из нескольких человек могут подготовить выступление, осветив более широкие темы, такие как «история измерения углов и дуг», «Тригонометрические функции в Индии», « Тригонометрия - автономная ветвь математики» и т.д
Довольно занимательным для учащихся может стать участие в создании школьной математической стенной газеты. Задачей создания в школе математической газеты является общее повышение математической культуры в школе. На страницах газеты могут найти свое место небольшие статьи по вопросам математики, выходящие за рамки школьной программы; образцы наиболее интересных в методическом отношении задач; исторические справки, исторические задачи; биографии выдающихся современных или живших ранее математиков; математические софизмы и парадоксы; и прочее. Таким образом, газета может в значительной мере отражать интересы учащихся, в частности по истории математики.
Необходимо привить учащимся способность работать с учебной, справочной и популярной литературой, а также искать необходимую информацию в Интернете. На первых порах возможно только знакомство с наиболее интересными задачами или математическими фактами, имеющими свое историческое значение, в дальнейшем смогут разрабатывать более серьёзные вопросы, готовить развернутые доклады и сообщения, самостоятельно искать и готовить для них материал.
Основные принципы и требования к отбору историко-научного материала для включения в процесс обучения математике
Рассмотрим принципы отбора и конкретные требования, предъявляемые к историко-научному материалу.
Среди принципов отбора историко-научного материала для включения в содержание образования Л.Я. Зорина называет следующие:
- создание мотивации к познанию. Историко-научный материал привлекается для создания учащихся мотивации, убежденности в необходимости новых знаний;
Другие рефераты на тему «Педагогика»:
- Теория коллективного воспитания в историческом контексте
- Упражнения в управлении токарным станком
- Воспитание милосердия у детей
- Организация самостоятельной работы младших школьников на уроках литературного чтения
- Развитие внимания младших школьников с нарушением интеллекта на уроках изобразительной деятельности
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения