Элементы истории математики при преподавании темы "Тригонометрия" в общеобразовательной школе
Тема урока: « Введение. Длина дуги окружности».
Тип урока: урок изучения нового материала.
Вид урока: беседа, практическая работа.
Цель учения (для учащихся): изучить и закрепить понятие числовой окружности.
Цель: повторить геометрический материал о вычислении длин дуг окружностей; ввести понятие числовой окружности.
Триединые дидактические цели урока:
· Образовательная
- повторить геометрический материал о вычислении длин дуг окружностей, ознакомить учащихся с новой математической моделью - единичной окружностью, ввести понятия – единичная окружность, четверти окружности, открытые дуги.
· Развивающая – развивать логическое мышление, умение анализировать, сравнивать, обобщать.
· Воспитательная – воспитывать у учащихся интерес к изучению математики, развивать культуру устной и письменной математической речи.
Технология организации проведения учебного занятия:
1. Подготовительный этап;
2. Проведение занятия;
3. Подведение итогов.
Алгоритм проведения учебного занятия:
1. организационный момент;
2. постановка целей урока;
3. устное повторение;
4. изучение нового материала;
5. подведение итогов;
6. домашнее задание.
Обоснование выбора методов, средств и форм обучения:
Оптимизировать обучение путем разумного сочетания и соотношения методов, средств и форм, направленных на получение высокого результата за время урока.
- обязательный учет характера учебного материала;
- использование элементов истории;
- выбор исследовательского метод, как наиболее преемственного для понимания темы «Введение. Длина дуги окружности».
Условия достижения результатов:
1. взаимосвязь тригонометрии с другими науками;
2. соблюдение преемственного обучения;
3. опора на полученные ранее знания;
4. активное взаимодействие учащихся в классе.
Основные принципы проведения урока:
1. наглядность;
2. доступность;
3. систематичность;
4. связь с предыдущим (непрерывность).
Литература
Вид доски на начало урока: на доске изображена числовая окружность
Ход урока:
Этапы |
Содержание |
Примечание |
Организационный момент. |
Здравствуйте, садитесь | |
Постановка урока |
Сегодня мы продолжаем знакомство с большим разделом алгебры - тригонометрические функции, и хочется чтобы вы понимали какой многовековой опыт несет за плечами наука тригонометрия. Поэтому хочу несколько слов сказать о истории этой науки и предпосылках ее возникновения. | |
Изучение нового материала. 1) Сведения из истории тригонометрии. |
Термин «тригонометрия» дословно означает «измерение треугольников». Она возникла, прежде всего, из практических нужд. Древние астрономы наблюдали за движением небесных светил. Учёные обрабатывали данные измерений, чтобы вести календарь и правильно определять время начала сева и сбора урожая, даты религиозных праздников. По звёздам вычисляли местонахождение корабля в море или направление движения каравана в пустыне. Наблюдения за звёздным небом с незапамятных времён вели и астрологи. Естественно, все измерения, связанные расположением светил на небосводе, — измерения косвенные. Прямые — осуществлялись только на поверхности Земли. Но и здесь далеко не всегда удавалось непосредственно определить расстояние между какими-то пунктами. И тогда вновь прибегали к косвенным измерениям. Например, вычисляли высоту дерева или размеры острова в море, сравнивая длину его тени с длиной тени от какого-нибудь шеста, высота которого была известна. Подобные задачи сводятся к анализу треугольника, в котором одни его элементы выражают через другие, с этим вы знакомились на уроках геометрии, изучая соотношения между сторонами и углами треугольника. Всё это очень интересно и в дальнейшем на следующих уроках я расскажу о великих ученых, которые внесли, неоценимы вклад в историю тригонометрии, и расскажу историю возникновения основных тригонометрических терминах. Пока же вернемся изучению тригонометрических функций и для введения этих функций нам понадобиться числовая окружность. Отнеситесь к этому очень внимательно, поскольку, как показывает опыт, учащийся, хорошо овладевший понятием «числовая окружность», свободно и непринужденно работающий с ней, без труда будет обращаться с тригонометрическими функциями. Для облегчения восприятия материала вспомним некоторые знакомые вам понятия. |
Слушают |
Устное повторение |
Вспоминаем с учащимися понятие: дуга окружности, длина дуги окружности, формулу для нахождения длины дуги окружности. |
Учащиеся отвечают на вопросы учителя |
Изучение нового материала 2) ввод понятий |
1) единичная окружность (после введения понятия) «… Следует отметить, что к записи формул при единичном радиусе стали приходить со времен Леонарда Эйлера(1707-1783) Эйлер усовершенствовал как символику, так и содержание тригонометрии. Одна из его заслуг: в отличие от своих предшественников он исключил из своих формул R –целый синус, принимая R=1 и упрощая, таким образом, записи и вычисления. 2) 1,2,3,4 четверти окружности 3) открытые дуги |
слушают |
Практическое задание |
1. Выполняют упражнение на нахождение длин различных дуг, выражая их в долях числа . 2. Показать учащимся прием нахождения на единичной окружности точек, соответствующих числам 1,2,3,4,5, и т.д.(примеры2,3 из учебника Мордковича А.Г.) 3. Выполнить №1,2,6,7,8 |
1.Решают с учителем (как вариант в диалоговой форме, либо кто-то у доски, но также в диалоговой форме в решении принимает участие весь класс. 2.Конспекти-руют и принимают активное участие в разборе задачи. 3.Решают по очереди у доски |
Дом задание Итоги |
№3,4,5. Повторение пройденного материала, знать основные понятия. |
Записывают домашнее задание. |
Конспект урока по алгебре,10 класс.
Тема урока : «Синус и косинус».
Тип урока: урок изучения нового материала.
Вид урока: лекция, практическая работа.
Цель учения (для учащихся): актуализировать определения синуса и косинуса, изучить их свойства.
Другие рефераты на тему «Педагогика»:
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения