Графические работы на уроках стереометрии в средней школе
Решение: а) Плоскость, параллельная каждой из скрещивающихся прямых существует, если данные прямые лежат в параллельных плоскостях.
б) Плоскость, пересекающая каждую из скрещивающихся прямых, существует, если существует прямая, принадлежащая этой плоскости, которая пересекает каждую из данных прямых.
2.11. Дан куб A
BCDA1B1C1D1. Пусть Р1, Р2, Р3, Р4, Р5, Р6, Р7, Р8 – середины ребер соответственно АВ, ВВ1, В1А1, А1А, CD, СС1, С1D1, DD1. Каково взаимное положение таких прямых и плоскостей, как: а) Р3Р4 и Р1Р2Р6 (рис. 33а); б) Р7Р8 и Р1Р2Р6 (рис. 33б); в) Р4Р7 и Р1Р2Р5 (рис. 33в); г) Р1Р6 и АВ1D (рис. 33г); д) АС и Р3Р4Р5 (рис. 33д); е) BD и Р3Р4Р5 (рис. 33е)?
Решение: а) Р3Р4 || (Р1Р2Р6) (признак параллельности прямой и плоскости);
б) Р7Р8 || (Р1Р2Р6) (признак параллельности прямой и плоскости);
в) Р4Р7 (Р1Р2Р5) (при параллельном проектировании Р4Р7 на вектор прямая пересечет плоскость Р1Р2Р5);
г) Р1Р6 || (АВ1D) (дополним плоскость АВ1D до плоскости АВ1С1D; при параллельном проектировании Р1Р6 на вектор прямая будет лежать в плоскости АВ1С1D, следовательно, в этой плоскости существует прямая, параллельная Р1Р6);
д) АС || (Р3Р4Р5) (дополним плоскость Р3Р4Р5 до Р3Р4Р6Р5; при параллельном проектировании АС на вектор прямая перейдет в диагональ параллелограмма Р3Р4Р6Р5, следовательно, в этой плоскости существует прямая, параллельная АС);
е) BD Р3Р4Р5 (при параллельном проектировании BD на вектор прямая пересечет плоскость Р3Р4Р5).
Дан параллелепипед ABCDA1B1C1D1, P и Q – внутренние точки граней соответственно ABCD и A1B1C1D1. Постройте сечение параллелепипеда плоскостью, проходящей через точки P и Q и параллельной прямой СС1 (рис. 34).
Решение: Проведем прямые PР1 и QQ1, параллельные СС1. Они задают плоскость, параллельную СС1 и проходящую через точки P и Q.
2.13. Дан куб ABCDA1B1C1D1; точка Р – середина ребра АА1. Постройте сечение куба плоскостью, проходящей через точки Р и D1 параллельно диагонали АС грани ABCD куба (рис. 35). Найдите периметр сечения, если ребро куба равно 10.
Решение: АС1 || (РВ1D1) (в этом можно убедиться, применив свойство диагоналей в параллелограмме A1B1C1D1 и теорему Фалеса к треугольнику АА1С1). По теореме Пифагора: . По формуле Герона: .
2.14. Докажите, что через две скрещивающиеся прямые можно провести параллельные плоскости (рис. 36).
Решение: Пусть прямые а и b скрещиваются. Выберем на прямой а произвольно точку А и проведем прямую с, параллельную b (через точку, не лежащую на данной прямой можно провести единственную прямую, параллельную данной). Прямые а и с задают плоскость β. По признаку параллельности прямой и плоскости: b || β. Аналогично, проведем прямую d в плоскости α.
α || β (если две пересекающиеся прямые плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны).
3.06. Постройте сечение пятиугольной пирамиды PABCDE плоскостью α, которая проходит через внутреннюю точку М основания ABCDE параллельно грани РAB (рис. 37).
|
3.07. Точки А, В и С лежат в плоскости α и не лежат на одной прямой. Равные и параллельные отрезки АА1, ВВ1 и СС1 расположены по одну сторону от плоскости α. Докажите, что (А1В1С1) || (АВС) (рис. 38).
Решение: ВВ1С1С – параллелограмм (из параллельности и равенства ВВ1 и СС1), следовательно ВС || В1С1. АВ || А1В1 (аналогично). По теореме о параллельности плоскостей (по двум пересекающимся прямым): (А1В1С1) || (АВС).
3.08. Точка В не лежит в плоскости ΔAEC, точки М, К и Р – середины отрезков соответственно АВ, ВС и ВЕ (рис.39). а) Докажите, что плоскости МКР и АЕС параллельны. б) Найдите площадь ΔМКР, если площадь ΔAEC равна 48 см2.
Решение: а)Заметим, что ΔAEC и не лежащая в нем точка В образуют тетраэдр ВАСЕ. МК || АС (МК – средняя линия ΔAВC). КР || СЕ (КР – средняя линия ΔВCЕ). По теореме о параллельности плоскостей (через пересекающиеся прямые): (МКР)||(АСЕ).
б) По формуле Герона:
, как средние линии соответствующих треугольников. Подставим данные значения в формулу: . Отсюда .
3.09. Три отрезка А1А2, В1В2 и С1С2, не лежащие в одной плоскости, имеют общую середину. Докажите, что плоскости А1В1С1 и А2В2С2 параллельны (рис. 40).
Решение: Каждые две пересекающиеся прямые задают плоскость (через любые две пересекающиеся прямые можно провести плоскость, и притом только одну). Так как точка пересечения делит прямые пополам, то по теореме Фалеса: А1В1 || В2А2. Аналогично доказывается параллельность С1В1 и С2В2, А1В1 и А2В2. По теореме о параллельности плоскостей (через пересекающиеся прямые): (А1В1С1)||(А2В2С2).
3.10. Прямая DF пересекает параллельные плоскости α, β и γ соответственно в точках D, Е и F, при этом DF = 3, ЕF = 9 (рис. 41). Прямая EG пересекает плоскости α и γ соответственно в точках G и Н, при этом EG = 12. Найдите длину GН.
Другие рефераты на тему «Педагогика»:
- Подготовка и проведение родительского собрания в детском дошкольном учреждении
- Анализ урока с точки зрения личностно-ориентированного обучения
- Современные концепции воспитания
- Малоподвижный ребенок: особенности развития
- Развитие творческих способностей учащихся на внеклассных занятиях по изготовлению изделий из древесины
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения