Графические работы на уроках стереометрии в средней школе
Пример 9: Докажите, что середины сторон пространственного четырехугольника являются вершинами параллелограмма (рис. 10).
Решение: Целесообразно рассматривать фигуру с разных сторон: каждые две пересекающиеся прямые задают плоскость (аксиома задания плоскости) → треугольник → параллельность и равенство
противолежащих сторон параллелограмма из свойства средней линии треугольника → A1B1C1D1 – параллелограмм (по определению).
Эффективность учебно-воспитательного процесса во многом зависит от умения учащихся самостоятельно получать и применять знания. Проблема методики формирования умений самостоятельной работы учащихся является актуальной для каждого преподавателя математики. Преподавание геометрии дает возможность в наибольшей степени развить у учащихся умение самостоятельной работы, особенно при решении задач. У учащихся необходимо формировать различные способы создания образов и оперирования ими.
Задания на создание геометрических образов используются в трех видах:
создание наглядного образа;
изменение чертежа, заданного в готовом виде, в ходе решения задачи;
мысленное видоизменение чертежа (по воображению) без изменения его исходного вида.
Для того, чтобы развивать у учащихся умение самостоятельно решать геометрические задачи, необходимо иметь дидактические материалы (задачи, упражнения), в которых бы учитывались особенности создания пространственных образов и оперирование ими.
Знание учителем конкретных особенностей создания учеником геометрических образов позволяет ему успешно проводить коррекционную работу, развивать пространственное мышление ученика в нужном направлении.
Далее разработана серия дидактических задач на разновидности «создания образа» по чертежу по теме: «Параллельность в пространстве». Задачи разбиты по типам урока: изучение нового материала; применение знаний, умений и навыков; проверка знаний, умений и навыков. Серия задач содержит задания на перевод словесных данных задачи в графический образ; выделение существенных признаков геометрических понятий; вычленение фигуры из состава чертежа; сравнение фигур (преобразование подобия); рассмотрение фигур чертежа с разных точек зрения; видоизменение пространственного положения, структуры исходного образа.
Все задачи даются в словесной формулировке для того, чтобы выявить у учащихся умение создавать пространственный образ по словесному описанию, уравнивания при этом исходные условия создания образа. К каждой задаче указаны применяемые определения, признаки, свойства геометрических понятий.
Изучение темы «Параллельность в пространстве» можно разделить на 3 части:
параллельность прямых;
параллельность прямой и плоскости;
параллельность плоскостей.
5.1. Уроки изучения нового материала
1.01. Сделайте чертеж: Прямая MP параллельна плоскости α, а прямая МТ пересекает эту плоскость в точке Т (рис. 11).
1.02. Сделайте чертеж: Плоскость α пересекает три параллельные прямые a, b и c соответственно в точках А, В и С, принадлежащих одной прямой (рис. 12).
1.03. Сделайте чертеж: Плоскость α пересекает три параллельные прямые a, b и c соответственно в вершинах ∆АВС (рис. 13).
1.04. Нарисуйте куб ABCDA1B1C1D1 (рис. 14). 1) Выделите в нем ребро ВВ1 и назовите все ребра куба: а) параллельные ему; б) пересекающие его; в) скрещивающиеся с ним. 2) Выделите диагональ AD1 грани ADA1D1 куба и назовите диагонали граней: а) параллельные AD1; б) пересекающие ее; в) скрещивающиеся с ней. Ответ обоснуйте.
2.01. Сделайте чертеж: Плоскость α проходит через середины сторон АВ и АС треугольника АВС и не содержит вершины А (рис. 15).
2.02. Сделайте чертеж: Прямая MP параллельна плоскости α, а плоскость РМТ пересекает эту плоскость по прямой КТ (рис. 16).
2.03. Сделайте чертеж: Прямая а параллельна каждой из параллельных плоскостей α и β (рис. 17).
2.04. Известно, что прямая m параллельна плоскости α. Параллельна ли эта прямая любой прямой, лежащей в этой плоскости α (рис. 18)? Ответ обоснуйте.
Решение: Пусть прямая а принадлежит плоскости α. Выберем на прямой m произвольно точку М и проведем через нее и прямую а плоскость β (аксиома задания плоскости). Прямые m и а не пересекаются (по условию), тогда они либо параллельны (), либо скрещиваются (). Следовательно, прямыми, параллельными прямой m, будут только те, с помощью которых можно задать плоскость (при участии m).
2.06. Даны две скрещивающиеся прямые а и b (рис. 19). Через каждую точку прямой а проводится прямая, параллельная прямой b. Докажите, что все такие прямые лежат в одной плоскости. Как расположена эта плоскость по отношению к прямой b? Ответ обоснуйте.
Решение: Пусть m || b , , тогда m и а задают плоскость α. Возьмем в плоскости α прямую с || b. По признаку параллельности прямых: с || m, тогда они задают некоторую плоскость β. По условию , значит, они тоже задают плоскость, которая совпадает с α. Следовательно, все прямые, параллельные b и пересекающие а лежат в плоскости, которая в свою очередь параллельна b (по признаку параллельности прямой и плоскости).
2.07. В тетраэдре ABCD точки K, F, N и M – середины ребер соответственно AD, BD, BC и AC (рис. 20). Заполните таблицу, выбрав (обведя в кружок) определенное вами расположение указанных прямой и плоскости: А – пересекаются, Б – параллельны, В – прямая лежит в плоскости, Г – невозможно определить:
Прямая и плоскость |
Взаимное расположение | |
1 |
BD и AMN |
А Б В Г |
2 |
MN и ABC |
А Б В Г |
3 |
KC и DMN |
А Б В Г |
4 |
MN и ABD |
А Б В Г |
5 |
KF и DMN |
А Б В Г |
6 |
FN и KMF |
А Б В Г |
7 |
CF и AND |
А Б В Г |
8 |
FN и DMK |
А Б В Г |
Другие рефераты на тему «Педагогика»:
- Информационные услуги и возможности Интернета: использование в образовательном процессе
- Логические задачи и упражнения как средства развития мыслительных операций у старших дошкольников
- Эволюционные теории управления в образовании
- Вопросы воспитания средствами театральной педагогики
- Духовно-нравственное воспитание младших школьников при изучении русских народных сказок
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения