Сравнительный анализ методики ознакомления с равенствами, неравенствами, уравнениями в традиционной школе и системе развивающего обучения
Возникает потребность в буквенном обозначении признака, а не предмета.
Предлагаем детям подумать, как на схеме показать, по какому признаку сравнили предмет. Кто-то нарисует рядом со схемой предметы, кто-то напишет словом, кто-то воспользуется первой буквой слова — названия признака. После обсуждения всех предложений вы придете к выводу, что удобнее обозначать одной буквой, а затем познак
омите ребят с буквами латинского алфавита, которые используют для обозначения. Дети дополняют свои схемы буквами и записывают с вашей помощью формулу. Используя вопросы, подводим детей к необходимости введения знаков “<”, “>”.
Далее предлагаем обратные задачи:
на восстановление предметов по схеме и формуле;
на восстановление предметов и схеме по формуле;
на восстановление предметов и формулы по схеме;
на восстановление схемы и формулы при сравнении предметов по определенному признаку.
В традиционной школе преобладает знаковое моделирование — вводятся знаки отношений “>”, “<”, “=”.
Первые числовые равенства, с которыми знакомятся дети, образованы при ознакомлении с действиями сложения, вычитания в концентре “Десяток”.
Введение знака “<” можно осуществить, выполняя такое упражнение. Учитель на доске, а учащиеся в тетрадках рисуют один предмет, например квадрат (закрашивают одну клеточку). Отступив немного (три клетки) вправо, рисуют два квадрата. Ученики делают вывод, что слева квадратов меньше, чем справа. Под одним квадратом пишут цифру 1, а под двумя — цифру 2, произносят: “Число 1 меньше числа 2” и между написанными цифрами 1 и 2 ставят знак “<”. Подобным образом вводятся записи вида 1=1, 2>1.
Чтобы учащиеся не путали знаки “<” и “>”, полезно воспользоваться мнемоническим приемом: где палочки расходятся, записывают большее число, а где сходятся — меньшее число.
2.3. Подбор величин по формулам равенства и неравенства
Основная задача данного этапа работы заключается в том, чтобы помочь ребенку осмыслить способы математического описания отношений между величинами с помощью схемы и формулы, а также восстановления величин, т.е. подбора предметов — носителей величины — по схеме или формуле. Это значит, что рассматриваются задания трех основных типов:
1) Даны предметы. Сравнивая по тому или иному признаку, дети чертят схему, показывающую отношение между величинами, а затем описывают это отношение в знаковой форме:
А А А
В В В
А>B или В<А А=В или В=А А<B или В>А
Важно, чтобы дети понимали, буквами А и В могут быть обозначены любые величины: длина (высота, ширина, толщина, глубина, периметр, и т.д.), площадь, масса, объем, количество, величина угла, а об отношении между ними можно сообщить словами: больше-меньше, выше-ниже, шире-уже, правее-левее, старше-моложе, тяжелее-легче, толще-тоньше и т.д. В математике все эти отношения описываются понятиями “больше-меньше”. Отношение “равно-неравно” может быть в быту описано словами “столько же”, “такие же”, “одинаковые”, “разные” и др., употребляя которые ребенок должен понимать, о какой величине идет речь. Так, например, когда говорят: “Купили 6 таких же стульев”, имеют в виду не их расцветку или форму, а как правило, цену, по которой приобрели эти стулья. Или в задаче сказано: “Если сшили 8 таких же платьев”, то речь идет опять же не о фасоне или расцветке ткани, а о расходе ткани на одно платье, и т.д.
2) Дана схема, описывающая отношение между величинами, нужно подобрать соответствующие величины (т.е. предметы-носители этих величин) и записать формулу.
3) Дана формула, описывающая отношение между величинами, нужно построить схему и подобрать соответствующие величины.
Отбирая материал к уроку, нельзя использовать однотипные упражнения, как это принято в традиционной школе, для закрепления и формирования навыка. В данной системе обучения, одной из задач которой является развитие и формирование способности думать, рассуждать, мыслить, нужно для уроков подбирать задания разного типа из разных блоков, что дает ребенку возможность осмысливать изменение условий, влекущее за собой изменение способа действия, и устанавливать различные связи и отношения как между величинами, включенными в задание, так и между заданиями. Это позволит в дальнейшем осознать принцип, который положен в основу придумывания заданий по типу составления “обратных” задач, когда меняются “ролями” известные и неизвестные величины.
Для выполнения каждого из данных типов заданий хорошо использовать группу из 3-4 детей: один действует с предметами, молча демонстрируя способ их сравнения, другой описывает результат сравнения с помощью схемы, третий на основании либо схемы, либо увиденного способа сравнения величин обозначает их буквами и записывает формулу (равенства или неравенства), используя знаки “=”, “>” и “<”, а четвертый выступает контролером, при этом разные группы могут работать с разными величинами.
Обсуждение итогов работы каждой группы может происходить следующим образом: каждая группа называет величину, с которой она работала. Остальные дети по схеме и формуле определяют, какие предметы могла сравнивать группа и какие ошибки при сравнении, при составлении схемы или записи формулы она могла допустить.
После такой проверки можно предложить группам, парам или отдельным детям (по выбору) придумать свои задания на сравнение или восстановление величин (с которой она работала) по схеме и формуле. Придумав задание, каждый должен выполнить свое задание так, как он хотел бы, чтобы его выполнили другие, а затем организовать “аукцион” заданий, при котором каждый выбирает понравившееся ему (из придуманных детьми) задание.
Предложенные задания можно классифицировать и по другому основанию: большинство из перечисленных заданий позволяет детям познакомиться с основными свойствами равенства и неравенств, однако названий рассматриваемых свойств детям сообщать не нужно. Главное, что дети должны понять, что иногда непосредственного сравнения величин производить не нужно, чтобы узнать, в каком отношении они находятся, т.е. вывод можно сделать, опираясь на результаты сравнения этих величин с другими.
Так, если А=В, то В=А (свойство симметричности), т.е. А сравнили с В, то нет необходимости вновь брать в руки предметы, чтобы сравнивать В и А. Если же А=В, а В=С, то нет необходимости А и С сравнивать непосредственно, так как А наверняка будет равно С, — это свойство транзитивности равенства. Аналогично можно рассмотреть транзитивность неравенства: если А>В, а В>С, то А>С, и если А<В, а В<С, то А<С.
Тот факт, что буквой может быть обозначена любая величина, дает возможность приступить к использованию дошкольного опыта ребенка, а именно: после составления одной из формулы А>В или А<В предлагать детям подбирать вместо букв подходящие числа. Здесь слово “подходящие” относится как к самому отношению (больше или меньше), так и к дошкольному опыту ребенка, что дает возможность каждому ребенку продемонстрировать свою дошкольную подготовку и при этом быть успешным при любом объеме дошкольных умений.
Другие рефераты на тему «Педагогика»:
- Антропологические идеи А. Маслоу, Д. Дьюи и С. Холла
- Решение ситуационных задач на уроках "Окружающий мир"
- Педагогические условия самореализации учащихся в музыкальной деятельности
- Технология формирования музыкально-творческих способностей участников любительских музыкальных эстрадных коллективов
- Особенности развития силовых способностей у детей среднего школьного возраста на уроках гимнастики
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения