Методика организации коллективной формы учебной деятельности учащихся на уроках математики в средней школе

Таким образом, проблемная ситуация возникла в результате рассмотрения способов решения конкретной задачи.

При разработке фрагмента урока была использована следующая литература:

Фрагмент урока для 11-го класса по теме «Иррациональные уравнения»

Комментарии к уроку

Тип данного урока - введение нового материала. Его основная цель - ввести понятие иррациональных уравнений и развиват

ь умение применять способы решения иррациональных уравнений. Урок разработан таким образом, что учащиеся, путем исследования, самостоятельно выводят алгоритм решения иррациональных уравнений и ее свойства. На уроке используются такие приемы коллективной формы обучения, как решение проблемно-поисковых задач и самостоятельное проведение исследования.

Оборудование: плакаты; карточки.

Изложение нового материала – 13 мин.

На магнитной доске висят карточки с уравнениями.

Учитель: Прошу вашего внимания на доску. Здесь расположены карточки, на которых записаны уравнения. Посмотрите внимательно и определите, какие уравнения вы уже умеете решать, а какие у вас вызывают затруднения?

Карточки:

Кто из вас может выйти к доске убрать карточки с уравнениями, которые вы можете решить и назвать их тип?

Вывод: Остались карточки с уравнениями, которые вы еще не умеете решать.

Чем отличается запись этих уравнений от тех, которые мы убрали?

(Предполагаемый ответ: неизвестное находится под знаком корня).

Верно! Такие уравнения, в которых под знаком корня содержится переменная, называются иррациональными уравнениями.

Итак, построим алгоритм решения простейших иррациональных уравнений, рассмотрим некоторые способы решения более сложных иррациональных уравнений.

Учитель объясняет алгоритм решения и оформления иррациональных уравнений.

Берет первую карточку с уравнением, прикрепляет к основной доске и решает его.

Решение.

Основной метод решения иррациональных уравнений – это метод возведения в квадрат обеих частей уравнения. Но при этом мы можем получить неравносильное уравнение, поэтому в конце обязательно нужно сделать проверку.

Возведем обе части уравнения в квадрат, получим

Проверка.

При верное равенство.

При верное равенство.

3. Следовательно, числа –3 и 3 являются решениями данного иррационального уравнения.

Ответ: -3; 3.

Учитель: А как бы вы решали вот такое уравнение: .

2. Выходит учащийся к доске и решает второе уравнение этим же способом.

Решение.

Возведем обе части уравнения в квадрат, получим

Проверим, являются ли полученные значения переменной решениями данного уравнения?

Проверка.

При верное равенство.

При верное равенство.

Следовательно, число 2 является решением данного уравнения.

(Ответ: 2).

Итак, получили, что только одно значение переменной является решением данного уравнения. Это число 2. Число –1 в данном случае называется посторонним конем.

Вопрос к отвечающему: «Скажи, важна ли проверка в иррациональных уравнениях, решаемых таким способом и почему?»

(Предполагаемый ответ: да, так как могут появиться посторонние корни).

Учитель: Возможность появления посторонних корней обязывает нас быть очень внимательными при решении иррациональных уравнений.

Мы рассмотрели один из способов решения иррациональных уравнений. Это возведение обеих частей уравнения в квадрат. А если переменная находится под знаком корня 3-ей, 4-ой и т.д. степени. Тогда как быть?

(Предполагаемый ответ: возвести обе части уравнения в 3-ю, 4-ю и т.д. степень).

Учитель: Кто попытается сформулировать общий способ решения иррациональных уравнений?

Выслушать все высказывания и в завершении подвести итог.

Учитель: «Значит одним из способов решения иррациональных уравнений является возведение обеих частей уравнения в степень, равную показателю степени корня. И не забыть, при этом сделать проверку, отсеяв, возможные посторонние корни».

Закрепление изученного материала – 10 мин.

Учитель: Итак, существует несколько способов решения иррациональных уравнений. Мы сегодня рассмотрели только некоторые из них. Давайте, перечислим, какие это способы?

(Предполагаемый ответ: возведение обеих частей уравнения в степень, равную показателю степени корня, графический способ, способ замены переменной).

Учитель: Расскажите алгоритм решения уравнений каждого из способов.

Учащиеся очень быстро проговаривают три алгоритма.

Учитель: Молодцы! А теперь прошу внимание на плакат

Плакат с уравнениями:

Рис. 9

Учитель: Как решить первое уравнение?

Выслушивает все варианты ответов. Если будут затруднения, вспоминает еще раз с учащимися определение арифметического квадратного корня и обратить внимание на доску с карточками, , где записаны условия выполнения равенства

(Ответ: уравнение не имеет решения).

Второе уравнение. Учащиеся дают свои варианты решения. Учитель их внимательно выслушивает, корректирует, задает наводящие вопросы, если это необходимо. И все вместе делают вывод, что уравнение не имеет корней.

Третье уравнение. Все необходимые рассуждения высвечиваются на экран. Решаем это уравнение с помощью области определения уравнения. В итоге получаем систему:

которая не имеет решений. Следовательно, и уравнение не имеет решений.

Плакат с решением уравнений:

Решение уравнений:

10

1

x

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы