Принципы дидактики в обучении математике. Цели и содержание обучения математике в средней общеобразовательной школе
Зарождение дидактики математики в России связывается с появлением первого русского учебника арифметики Л.Ф. Магницкого (1703 г.), в котором впервые числа записывались арабскими цифрами, а не Славянскими буквами. Прототипами учебников по систематическим курсам арифметики и алгебры являются «Руководство к арифметике» Леонарда Эйлера (1707-1783) и «Универсальная арифметика». Н.Г. Курганов (ученик
Магницкого) использовал конкретно-индуктивный метод в своих учебниках алгебры (1557 г.) и арифметики (1771 г.) и перевел на русский язык знаменитые «Начала» Евклида.
На рубеже XVIII-XIX в.в. академик С.Е. Гурьев выдвинул прогрессивную идею пропедевтических курсов математических дисциплин в школе и более строго, научного изложения. Создатели русской дидактики арифметики для Народной школы: Буссе Ф.И. «Руководство преподавания арифметики» (1830 г.) и Гурьев П.С. «Руководство к преподаванию арифметики малолетним детям» (1839 г.). Крупнейшие представители: Гольденберг А.И., Шохор-Троцкий С.И. (обучение через системы задач), Арженников К.П. и др.
Некоторые основы дидактики геометрии заложены Лобачевским Н.И., академиком Гурьевым С.Е., Осиповским Т.Ф., а первый большой труд посвященный преподаванию систематического курса, – «Материалы по методике геометрии» (1883 г.) принадлежат А.Н. Остроградскому.
Во второй половине XIX в. создаются основы дидактики алгебры, тригонометрия и начал анализа (Стралолюбский А.Н. Ермаков В.П.), Шереметевский В.П.
Система традиционной МПМ в СШ включала общую МПМ и пять частных методик: начального курса арифметики, систематических курсов арифметики, алгебры, геометрии и тригонометрии. В последних содержались конкретные методические рекомендации по изучению теоретических вопросов курса и решения задач и их называли «рецептурными». Общую МПМ называли теоретической и она рассматривала общие вопросы относящиеся к изучению любого математического предмета, как цели обучения математики, математические понятия и предложения, теоремы и их доказательства, задачи и их решения, методы и формы обучения и т.д.
Принципы дидактики в обучении математике
Методика не только использует достижения дидактики для усовершенствования учебного процесса, но и сама оказывает влияние на развитие дидактики
МПМ, решая свои задачи, учитывает основные общедидактические закономерности обучения:
обусловленность учебно-воспитательного процесса потребностями общества;
взаимосвязь обучения, образования, воспитания и развития в целостном педагогическом процессе;
зависимость результатов учебно-воспитательной деятельности от реальных возможностей учеников;
зависимость обучения и воспитания от условий, в которых они протекают;
взаимосвязь воспитания и обучения;
взаимозависимость целей, содержания, методов, средств и форм;
зависимость результатов учебно-воспитательной деятельности от оптимального влияния всех элементов учебно-воспитательного процесса.
МПМ, как и каждая методика, опирается на дидактические принципы. Она представляет собой наиболее общее нормативное знание того, как надо строить, осуществлять и усовершенствовать обучение, развитие и воспитание учеников. Рассмотрим систему принципов, разработанных дидактикой, и наметим основные требования к процессу обучения математике, которое вытекает из каждого принципа. Принципы направленности обучения на комплексное решение задач образования, воспитания и общего развития учащихся:
добиваться того, чтобы каждый ученик овладел знаниями, умениями и навыками, зафиксированными в программе по математике;
осуществлять мировоззренческую направленность школьного курса математики;
проводить работу по моральному, трудовому, эстетическому воспитанию учащихся средствами математики, осуществлять профориентацию;
развивать мышление, устную и письменную речь учащихся;
проводить работу по овладению логическими операциями, суждениями, логическими выводами;
развивать в процессе изучения школьного курса математики представления, память, внимание учащихся, их волю, эмоции, интерес, способности.
Принцип научности:
содержание школьного курса математики должно в большей степени отвечать уровню современной математической науки;
знакомить учащихся с эмпирическими, логическими и математическими методами научного познания;
учить школьников замечать и обосновывать математические закономерности;
внедрять в учебный процесс элементы проблематичности, метода исследования;
раскрывать динамику развития самой науки математики;
следить за правильностью формулировок при определении математических понятий, построении доказательств, решении задач;
приучать учащихся критически относится к каждому суждению, не считать доказанным то, что не обосновано; различать определения, теоремы и признаки.
Принцип активности, самостоятельности и самоосознанности:
воспитывать у школьников ответственное отношение к учебе как к одному из главных путей формирования самоосознанности учения;
добиваться глубокого осмысления учебного материала, вырабатывать умения использовать математические знания на практике;
помогать ученикам выявлять и исправлять математические и логические ошибки; обучать их навыкам самоконтроля;
внедрять различные способы и приемы обучения для того, чтобы обеспечить активное участие в учебной работе учеников с различными типами запоминания, мышления с разными интересами и способностями;
шире внедрять в процесс обучения математике эвристическую беседу, создавать проблемные ситуации;
использовать различные виды взаимопомощи при учении;
расширять формы и методы самостоятельной работы учащихся;
учить школьников использовать рациональные приемы организации учебной деятельности, умению составлять план доказательства теоремы, план ответа и т.д.;
не допускать чрезмерной опеки учащихся;
учить приемам развития памяти, рационального логического заучивания, сравнения, аналогии, классификации и систематизации изучаемого материала.
Принцип систематичности и последовательности:
выделение системы понятий и наиболее важных правил, теорем, которые составляют основу изучаемого материала, определение места данного материала в системе математических знаний;
выделение логической структуры и логического типа изучение нового материала, организация целенаправленного и систематического повторения;
систематическое использование различных видов наглядности: таблиц, схем и т.д.;
осуществление внутрипредметных и межпредметных связей; использование алгоритмов;
обучение от простого к сложному, от представлений к понятиям, от известного к неизвестному, от знаний к умениям, а от них – к навыкам.
Принцип доступности:
использовать и осуществлять процесс обучения на основе реальных мыслительных способностей учащихся конкретного класса (городской или сельской школы);
опираться в процессе обучения на возрастные и индивидуальные особенности учеников;
выполнять требования программы к математической постановке учащихся при планировании содержания обучения;
Другие рефераты на тему «Педагогика»:
- Социально-психологические факторы эффективности общения преподавателя и учащихся
- Нарушение речевой деятельности у детей с общим недоразвитием речи
- Рефлексивность как профессионально значимое личностное качество учителя-логопеда
- Любовь как этический принцип педагогики
- Историческая ретроспектива взглядов отечественных педагогов на природу в развитии ребенка
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения