Принципы дидактики в обучении математике. Цели и содержание обучения математике в средней общеобразовательной школе

– умение анализировать;

– умение использовать знания при решении практических задач;

– критичность мышления;

– владение математической речью;

– терпение при решении задач.

По его мнению математическое развитие учеников не может быть обеспечено только программой, а необходимо настойчивая и очень хлопотливая работа учителя.

Термин «Элементарная математика» обозначает два р

азличных понятия. С одной стороны, этим термином обозначают всю математику до 17 века, т.е. «Совокупность таких разделов, задач и методов математики, в которых не пользуются общими понятиями переменной, функции, предела и тем более общим понятием множества», иначе говоря, традиционная элементарная математика (ТЭМ), содержащая арифметику, алгебру, геометрию и тригонометрию и потому имеет лишь историческое значение. С другой стороны, элементарной математикой обозначают школьный предмет, т.е. совокупность математических дисциплин, изучаемых в средней школе, которая изменяется под влиянием развития математической науки и потребностей общества и обладает признаками:

элементарна в смысле начальной, составляющей основы современной математической науки;

элементарна в смысле достаточной простоты и доступности для учащихся средней школы. Другими словами, современная элементарная математика (СЭМ) – это не только и не столько традиционное содержание школьного курса математики, сколько то новое содержание, которое находится в стадии разработки и станет предметом будущей педагогической деятельности.

Проблема содержания обучения является самой сложной и важной проблемой школьного математического образования. Необходимо «отображать такой минимум знаний, который, является стабильным, политехнически ориентированным, включал бы воспитательный аспект и в тоже время был бы достаточным для дальнейшего пополнения знаний, для формирования современного научного стиля мышления и не приводил бы перегрузке учеников».

Содержание школьного курса математики определяется общими целями обучения, содержанием самой математической науки, значением математики и местом ее в системе среднего образования. Современное содержание общего среднего образования и учебных предметов представлены четырьмя видами.

В отношении к математике как учебному предмету это:

система теоретических, методологических, логических, межпредметных, прикладных, историко-научных знаний. Эти знания обеспечивают общее математическое и политехническое образование, является основой формирования мировоззрения;

система обще-учебных, математических, интеллектуальных умений. Она обеспечивает учебную деятельность учеников, применение знаний на практике;

опыт творческой деятельности, накопленный практикой математического познания, необходимый для решения учебно-воспитательных задач, для творческого подхода к овладению математической и применения знаний и умений. Это важный элемент в воспитании творческой личности;

опыт эмоционально-целостных отношений к математическим знаниям, моральных норм, эстетических проявлений действительности.

Все эти четыре вида содержания обучения взаимосвязаны. Так, не зная формул объема пирамиды, нельзя практически найти его. Без умения выполнять вычисления, тождественные преобразования нельзя приобрести полноценных знаний об уравнениях. Тот ученик, который не владеет опытом творческой математической деятельности, обречен на копирование действий. Он не сможет решить нестандартную задачу, потому что не умеет переносить свои знания в новую ситуацию и т.д. И наконец, опыт эмоционально целостных отношений к действительности, которая стала объектом или средством деятельности, способствует формированию качеств личности школьника. Все эти виды содержания надо иметь в виду учителю при организации процесса обучения математике.

На сегодня общепризнанных критериев отбора основ наук нет, однако делаются попытки их сформулировать. Ю.К. Бабанский предложил следующие критерии оптимизации объема и сложности учебного материала:

целостности содержания, – это означает, что учебный предмет должен отражать все основные направления развития науки;

научной общепризнанности, по которому с некоторыми вопросами можно знакомить учеников, но в основу наук не включать;

научная значимость, которая отражает широту внедрения научных знаний. Они могут иметь всеобщий или частный характер;

соответствие возрастным особенностям ученика, которые тесно связаны с доступностью;

соответствие времени, отведенному на изучения учебного предмета;

соответствие международным стандартам, это означает, что учебные программы наших школ должны соответствовать лучшим мировым примерам аналогичных программ.

Современное содержание школьного курса математики получило научное обоснование. Несмотря на изменения, которые происходят в нем, на продолжении достаточно значительного отрезка времени оно сохраняет свое основное ядро:

числовые системы;

величины;

уравнения и неравенства;

тождественные преобразования математических выражений;

координаты;

функции;

геометрические фигуры и их свойства, измерение геометрических величин; геометрические преобразования;

векторы;

основы математического анализа.

Каждый раздел имеет свою историю развития как предмет изучения в средней школе.

Проекты модернизации школьного образования предмета для изучения:

элементарную теорию множеств;

введение в математическую логику;

понятия из современной алгебры (группы, кольца, поля и вектора);

введение в теорию вероятностей и статистику.

Модернизация математического образования означает приведение элементарной математики в соответствие с современными идеями, методами, требованиями. Движение за модернизацию математического образования началось более 100 лет тому назад. Однако целесообразней осовременивать преподавание математики, чем включать в программу новые разделы из современной математики, представляющие методические трудности в изложении.

Модернизация не означает отказа от всего традиционного, а лишь замену тех из них, которые потеряли в настоящее время смысл. Примером такой традиции может служить Евклидова система построения геометрии. Выделим причины, осложняющие ее модернизацию:

она громоздка и изолирует геометрию от остальной математики, и проникновение в нее современных идей;

необходимые для практики геометрические знания приобретаются в пропедевтическом курсе, построенном на использовании опыта и основанном на интуиции; в дальнейшем необходимо введение дедуктивного метода, способствующего развитию логического мышления;

психологический фактор (не приятие современного построения прежде всего учителями).

Таким образом в процессе обучения математики в органичном единстве должны достигаться образовательные, воспитательные и развивающие цели. Учителю математики необходимо точно знать цели обучения в целом и в каждом классе отдельно, что поможет правильно определить цели изучения тем и уроков.

Проникновение математики в другие науки повлияло на формирование целей математического образования и привело к тому что владение математическими знаниями и методами в определенном объеме и специфическим языком математики стали обязательным элементом общей культуры. В процессе обучения математике необходимо формировать у учащихся научные мировоззрения и навыки мыслительной деятельности по добыванию новых знаний, усилить прикладное значение изучаемого теоретического материалы, привить учащимся навыки проведения логических рассуждений и выделения логических следствий, характерных дедуктивному мышлению.

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы