Формирование логической грамотности при обучении математике младших школьников
Затем решают задачу дальше:
3) 118 : 2 = 59 (чел.) — стало в каждом автобусе.
Чтобы легче было сформулировать последнюю часть задачи, можно переделать чертеж с учетом найденных данных. Ученики формулируют: «Из одного автобуса вышли 8 человек, и в нем осталось 59 человек. В другой автобус сели 3 человека, и в нем стало 59 человек. Сколько человек было в каждом автобусе сначала?» — и зака
нчивают решение:
4) 59 + 8 = 67 (чел.) — было в первом автобусе.
5) 59 - 3 = 56 (чел.) — было во втором автобусе.
Иногда полезно разделить на части не условие, а вопрос задачи. Так можно поступить при решении следующей задачи.
Задача 23.18 ручек стоят на 30 рублей больше, чем 30 карандашей. Те же 18 ручек стоят на 10 рублей больше, чем 40 таких же карандашей. Сколько стоят 1 карандаш и 1 ручка?
Сначала ученики выполняют к задаче чертеж (рис. 7).
Рис. 7
Затем, используя чертеж, отвечают сначала на первый вопрос: «Сколько стоит 1 карандаш?»
1) 40 - 30 = 10 (шт.) — разница в количестве карандашей.
2) 30 - 10 = 20 (р.) - стоят 10 карандашей.
3) 20 :10 = 2 (р.) — стоит 1 карандаш. После этого можно ответить на второй
вопрос: «Сколько стоит 1 ручка?»
4) 2 • 30 = 60 (р.) — стоят 30 карандашей.
5) 60 + 30 = 90 (р.) - стоят 18 ручек.
6) 90 :18 = 5 (р.) — стоит 1 ручка.
Данный прием используется в задачах с большим числом разных объектов или действий с ними, с несколькими вопросами. В следующих задачах также можно использовать прием разбиения задачи на части.
Задача 24. На двух кустах сидели 16 воробьев. Со второго куста улетели 2 воробья, а затем с первого куста на второй перелетели 5 воробьев. После этого на каждом кусте оказалось одно и то же число воробьев. Сколько воробьев было вначале на каждом кусте? (12 и 4 воробья.)
Задача 25. Три подружки договорились купить к праздничному столу 12 пирожных. Первая купила 5 штук, вторая — 7, а третья вместо своей доли пирожных внесла 12 рублей. Как подружки должны разделить между собой эти деньги, если все пирожные были по одинаковой цене? (3 рубля и 9 рублей.)
Серия VIII
С помощью задач серии VIII можно вывести следующую рекомендацию при решении нестандартных задач: решать задачу можно, начиная «с конца».
Задача 26. Мать троих сыновей оставила утром тарелку слив. Первым проснулся старший сын, съел третью часть слив и ушел. Вторым проснулся средний сын, он съел третью часть того, что было на тарелке, и ушел. Позднее всех встал младший сын. Он съел также третью часть слив. После этого на тарелке осталось 8 слив. Сколько слив мать утром положила на тарелку?
Ученики выполняют чертеж (рис. 8).
Рис.8
Учитель предлагает начать решать задачу «с конца», так как известно, сколько слив осталось в конце, когда три брата съели сливы. Из чертежа видно, что 8 слив — это 2/3 всех слив, которые были в тарелке, когда встал младший сын. Найдем, сколько слив было в тарелке, когда встал младший сын: 8:2-3=12 (сл.). Подпишем это число на втором отрезке (рис. 9).
Рис. 9
Из чертежа видим, что 12 слив — это всех слив, которые были в тарелке, когда встал средний сын. Найдем, сколько слив было в тарелке, когда встал средний сын: 12 : 2 • 3 = 27 (сл.). Делается вывод о том, что, решая «с конца», последовательно пришли к тому, что было в самом начале. Прием используется, когда в задаче известно число, полученное в конце выполнения каких-либо действий.
В следующих задачах ученики упражняются в решении задач «с конца».
Задача 27. Мальчик задумал число. Умножил его на 3, из полученного произведения вычел 10, затем к результату прибавил 16. У него получилось 21. Какое число задумал мальчик? (5)
Задача 28. Девочка начертила 4 отрезка. Каждый следующий отрезок она делала на 2 см длиннее предыдущего. Найди длину первого отрезка, если длина четвертого отрезка равна 12 см. (6 см)
Задача 29.У моста через речку встретились лодырь и волшебник. Лодырь стал жаловаться на свою бедность. В ответ волшеник предложил: «Каждый раз, как ты перейдешь этот мост, деньги у тебя удвоятся. Но каждый раз, перейдя мост, ты должен будешь отдать мне 24 копейки. Согласен?» Три раза переходил лодырь по мосту. А когда посмотрел в кошелек, там ничего не осталось. Сколько денег было у лодыря? (21 копейка.)
Сформулированные рекомендации по решению нестандартных задач объединяются в следующей памятке.
Памятка
Если тебе трудно решить задачу, то попробуй:
1) сделать к задаче рисунок или чертеж; подумай, может быть, нужно сделать на них дополнительные построения или изменить чертеж в процессе решения задачи;
2) ввести вспомогательный элемент (часть);
3) использовать для решения задачи способ подбора;
4) переформулировать задачу другими словами, чтобы она стала более понятной и знакомой;
5) разделить условие или вопрос задачи на части и решить ее по частям;
6) начать решение задачи «с конца». Важно объяснить детям, что данные
указания носят рекомендательный характер. Необязательно применять их в той последовательности, как они записаны в памятке, необязательно выполнять все рекомендации при решении одной задачи, можно комбинировать их в разных сочетаниях. В этом суть творческого процесса решения нестандартных задач. Можно показать это учащимся при совместном решении нескольких задач.
Задача 30. В семье 12 детей. Они собрали в лесу 70 орехов. Половину всех орехов мама раздала дочерям поровну. Остальные она отдала сыновьям, которые разделили их между собой также поровну. Каждый мальчик получил на 2 ореха больше, чем каждая девочка. Сколько у мамы дочерей и сыновей?
Сначала можно выделить следующую часть условия: «Собрали в лесу 70 орехов. Половину всех орехов мама раздала дочерям, остальные — сыновьям». Отсюда узнаем, что все дочери получили 70 : 2 = 35 (ор.) и сыновья также получили 35 орехов.
Затем выделяется вторая часть условия: «В семье 12 детей. Все дочери получили 35 орехов. И все сыновья получили 35 орехов. Мальчики и девочки разделили орехи поровну». Отсюда заключаем, что число сыновей и число дочерей — это числа, которые в сумме дают число 12, и число 35 делится на каждое из них без остатка. Таким образом, мы переформулировали условие, сказали его другими словами. Теперь будем использовать способ подбора. Число 35 делится на 5, 7, 1, 35. Подходят числа 5 и 7, так как их сумма равна 12.
Остается решить, кого было 5 — сыновей или дочерей? Используем последнюю часть условия: «Каждый мальчик получил на 2 ореха больше, чем каждая девочка». Все девочки получили 35 орехов, все мальчики получили 35 орехов, если каждому мальчику досталось орехов больше, значит, мальчиков меньше, чем девочек. Получаем ответ задачи: в семье 5 сыновей и 7 дочерей.
После работы, проведенной на первом этапе, можно перейти ко второму, на котором учащиеся самостоятельно решают нестандартные задачи. Приведем примеры нестандартных задач.
Другие рефераты на тему «Педагогика»:
- Методические особенности введения показательной функции в курсе математики средней школы
- Обновление содержания образования в контексте ценностей компетентностного подхода
- Вокальное развитие детей младшего школьного возраста в процессе вокальных упражнений в условиях центра детского творчества
- Система упражнений в диалогической речи на разных этапах обучения иностранному языку
- Психолого-педагогическое взаимодействие участников образовательного процесса
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения