Формирование геометрических представлений у дошкольников
2. Составить маленький и большой квадраты.
Вопросы для анализа: «Из скольких палочек составлена каждая сторона большого квадрата? Весь квадрат? Почему левая, правая, верхняя и нижняя стороны квадрата составлены из одного и того же количества палочек?»
Можно дать задание на составление большого и маленького треугольника. Анализ выполнения задания проводится аналогично.
3. Составить п
рямоугольник, верхняя и нижняя стороны которого будут равны 3 палочкам, а левая и правая – 2.
После анализа детям предлагают составить любой четырехугольник и доказать правильность выполнения задания.
4. Составить из ниток последовательно фигуры: круг и овал, большие и маленькие квадраты, треугольники, прямоугольники и четырехугольники. Маленькие фигуры составляются из нитки, сложенной вдвое.
Анализ фигур проводится по схеме: «Сравните и скажите, чем отличаются, чем похожи фигуры. Докажите, что фигура составлена правильно».
Уточнение представлений детей о геометрических фигурах; их элементарных свойствах (количество углов и сторон), упражнение в составлении будут способствовать усвоению детьми способов решения головоломок первой группы. Их предлагают детям в определенной последовательности:
Составить 2 равных треугольника из 5 палочек.
Составить 2 равных квадрата из 7 палочек.
Составить 3 равных треугольника из 7 палочек.
Составить 4 равных треугольника из 9 палочек.
Составить 3 равных квадрата из 10 палочек.
Из 5 палочек составить квадрат и 2 равных треугольника.
Из 9 палочек составить квадрат и 4 треугольника.
Из 10 палочек составить 2 квадрата: большой и маленький (маленький квадрат составляется из 2 палочек внутри большого).
Из 9 палочек составить 5 треугольников (4 маленьких треугольника, полученных в результате при-строения, образуют 1 большой).
Из 9 палочек составить 2 квадрата и 4 равных треугольника (из 7 палочек составляют 2 квадрата и делят на треугольники 2 палочками).
Для того чтобы решить эти задачи, нужно владеть способом при-строения, присоединения одной фигуры к другой. Впервые получив такое задание, дети пытаются составить 2 отдельных треугольника, квадрата. После ряда безуспешных попыток догадываются о необходимости пристроения к одному треугольнику, квадрату другого, для чего достаточно 2, 3 палочек.
По мере накопления детьми опыта в решении подобных задач методом «проб и ошибок» количество неправильных проб, практических действий начинает сокращаться. Исходя из этого, воспитатель, сохраняя занимательность, игровой характер упражнений, направляет ребят на целенаправленные пробы, которым предшествует хотя бы элементарное обдумывание конкретного хода решения. В процессе поиска решения обращает внимание ребят на то, что, прежде чем составлять ответ, надо подумать, как это можно сделать. Достаточно провести 3-4 занятия, в процессе которых дети овладевают способами пристроения к одной фигуре другой так, чтобы одна или несколько сторон оказались общими. Примеры (для детей 5-6 лет)
(Здесь и далее дается методика проведения части занятия с использованием занимательного материала)
Составление фигур из треугольников и квадратов
1. Пример
Цель. Учить детей составлять геометрические фигуры из определенного количества палочек, пользуясь приемом пристроения к одной фигуре, взятой за основу, другой.
Материал: У детей на столах счетные палочки, доска, мел на данном и следующем занятиях.
Ход работы. 1. Воспитатель предлагает детям отсчитать по 5 палочек, проверить и положить их перед собой. Затем говорит: «Скажите, сколько потребуется палочек, чтобы составить треугольник, каждая сторона которого будет равна одной палочке. Сколько потребуется палочек для составления двух таких треугольников? У вас только 5 палочек, но из них надо составить тоже 2 равных треугольника. Подумайте, как это можно сделать, и составляйте».
После того как большинство детей выполнят задание, воспитатель просит их рассказать, как надо составить 2 равных треугольника из 5 палочек. Обращает внимание ребят на то, что выполнять задание можно по-разному. Способы выполнения надо зарисовать. При объяснении пользоваться выражением «пристроил к одному треугольнику другой снизу» (слева и т.д.), а в объяснении решения задачи пользоваться также выражением «пристроил к одному треугольнику другой, используя лишь 2 палочки».
2. Составить 2 равных квадрата из 7 палочек (воспитатель предварительно уточняет, какую геометрическую фигуру можно составить из 4 палочек). Дает задание: отсчитать 7 палочек и подумать, как из них составить на столе 2 равных квадрата.
После выполнения задания рассматривают разные способы пристроения к одному квадрату другого, воспитатель зарисовывает их на доске.
Вопросы для анализа: «Как составил 2 равных квадрата из 7 палочек? Что сделал сначала, что потом? Из скольких палочек составил 1 квадрат? Из скольких палочек пристроил к нему второй квадрат? Сколько потребовалось палочек для составления 2 равных квадратов?»
2. Пример
Цель. Составлять фигуры путем пристроения. Видеть и показывать при этом новую, полученную в результате составления фигуру; пользоваться выражением: «пристроил к одной фигуре другую», обдумывать практические действия.
Ход работы. Воспитатель предлагает детям вспомнить, какие фигуры они составляли, пользуясь приемом пристроения. Сообщает, чем они сегодня будут заниматься – учиться составлять новые, более сложные фигуры. Дает задания:
1. Отсчитать 7 палочек и подумать, как можно из них составить 3 равных треугольника.
После выполнения задания воспитатель предлагает всем детям составить 3 треугольника в ряд так, чтобы получилась новая фигура - четырехугольник (рис. 2). Этот вариант решения дети зарисовывают мелом на доске. Воспитатель просит показать 3 отдельных треугольника, четырехугольник и треугольник (2 фигуры), четырехугольник.
Рис. 2 Составление фигур из треугольников
2. Из 9 палочек составить 4 равных треугольника. Подумать, как это можно сделать, рассказать, затем выполнять задание.
После этого воспитатель предлагает детям нарисовать мелом на доске составленные фигуры и рассказать о последовательности выполнения задания.
Вопросы для анализа: «Как составил 4 равных треугольника из 9 палочек? Какой из треугольников составил первым? Какие фигуры получились в результате и сколько?»
Воспитатель, уточняя ответы детей, говорит: «Начинать составлять фигуру можно с любого треугольника, а потом к нему пристраивать другие справа или слева, сверху или снизу».
3. Пример
Цель. Упражнять детей в самостоятельных поисках путей составления фигур на основе предварительного обдумывания хода решения.
Ход работы. Воспитатель задает детям вопросы: «Из скольких палочек можно составить квадрат, каждая из сторон которого равна одной палочке? 2 квадрата? (из 8 и 7). Как будете составлять 2 квадрата из 7 палочек?».
1. Отсчитать 10 палочек и составить из них 3 равных квадрата. Подумать, как надо составлять, и рассказать.
Другие рефераты на тему «Педагогика»:
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения