Функциональная пропедевтика на уроках математики в пятых-шестых классах

- упорядочение имеющихся представлений о функции, развёртывание системы понятий, характерных для функциональной линии (способы задания и общие свойства функций, графическое истолкование области определения, области значений, возрастания и т.д. на основе метода координат);

- глубокое изучение отдельных функций и их классов;

- расширение области приложений алгебры за счёт включения в неё

идеи функции и разветвлённой системы действий с функцией.

Первоначально понятие функции как аналитического выражения сложилось в первой половине XVIII века в связи с бурным развитием производительных сил. Термин функция ввёл И. Бернулли в 1718 году. Л. Эйлер предложил в 1748 году определение функции как аналитического выражения.

В общем виде определение функции было дано Н.И. Лобачевским в 1834 году. В современной формулировке: «Если каждому допустимому значению переменной величины х соответствует определённое значение переменной величины у, то х называется независимой переменной, а у – функцией от х».

В этой формулировке слово «соответствует» не говорит о виде зависимости переменных величин. Оно может быть задано описанием; например, чтобы находить последовательные цифры при извлечении квадратного корня из положительного числа, имеется определённый алгоритм.

Идея функциональной зависимости находит свое отражение не только в математике, но и в ряде других наук - физике, химии, биологии, медицине, истории, кибернетике. Велика роль функции как мощного аппарата в познании процессов, происходящих в реальном мире. Знание функциональных зависимостей помогает найти ответы на разнообразные вопросы - от расшифровки памятников древности до управления сложнейшими производственными процессами. Наблюдая веками явления природы, человек замечал соответствие между ними. Систематизируя и обобщая устойчивые взаимосвязи в природе, он познал закономерности и учился применять их для объяснения разнообразных явлений природы. Математическими моделями таких закономерностей и являются функции.

Понятия соответствия и однозначного аналитического выражения функции не противопоставляются, второе просто частный случай первого.

Соответственно можно к понятию функции подвести:

1) рассматривая однозначные аналитические выражения зависимостей;

2) дав примеры соответствия между величинами, не записанными аналитически.

Из алгебры аналитические выражения зависимостей у=ах, у=а/х, у=ах+в и другие; из геометрии – формулы площадей и объёмов, в которых зависимость задана тоже аналитически.

Рассмотрим зависимости, заданные не аналитически. Например, можно взять результат наблюдения температуры воздуха:

6 часов: -2о

7 часов: 0о

8 часов: +1о

9 часов: +1,5о

10 часов: +3о

11 часов: +5о

12 часов: +6,5о

13 часов: +7,5о

14 часов: +8о

15 часов: +8,6о

16 часов: +7о

17 часов: +5о

Рассматривая пары значений времени и температуры и устанавливают, что каждому значению времени наблюдения соответствует определённое значение температуры. В данном случае температура – функция времени.

Понятие функции является одним из понятий, отражающих взаимосвязи явлений и предметов. Это одно из важнейших понятий математики, исходное понятие ведущей её области – математического анализа.

Определение: Функцией называется такая зависимость переменной y от переменной x, при которой каждому значению x соответствует единственное значение y.

Переменную x называют независимой переменной или аргументом, а y – зависимой переменной. Говорят также, что y является функцией от x. Значение y, соответствующее заданному значению x, называют значением функции.

Чтобы задать функцию, нужно задать числовое множество Х (его называют областью определения функции) и способ (правило), с помощью которого для каждого числа x из множества Х можно найти соответствующее число у – значение функции.

Функции принято обозначать буквами f, g, h и др. Если f – функция, то значение переменной у, соответствующее аргументу х, обозначают f(x), т.е. y=f(x).

Чаще всего функции задают с помощью формул, указывающих, как по данному значению аргумента найти соответствующее значение функции. Например, если длина стороны квадрата равна x дм, а площадь y дм2 , то формула y=x2 задаёт функцию, областью определения которой будет множество положительных действительных чисел.

Если куплено х тетрадей, по 3 рубля каждая, а у рублей – стоимость всей покупки, то формула у=3х задаёт функцию, область определения которой есть множество целых неотрицательных чисел.

Иногда функцию задают таким образом:

у= 3х-1, при х>0;

2х, при х≤0,

т. е. на разных участках значений х функция задаётся различными формулами.

Часто при задании функции с помощью формулы её область определения не указывается. В таких случаях считают, что область определения состоит из всех значений переменной, при которой эта формула имеет смысл. Никогда не следует забывать, что формула – это не сама функция, а лишь один из способов её задания. Следует отметить, что функцию можно задать и просто описанием. Например: каждому числу х поставить в соответствие его целую часть, т. е. у=[х].

Иногда функцию задают в виде таблицы. Примером табличного задания функции будет зависимость точки кипения воды от атмосферного давления:

Давление (мм)

300

350

400

450

500

550

600

650

700

Температура (°С)

75,8

79,6

83,0

85,8

88,5

91,2

93,5

95,7

97,6

Приведём ещё пример зависимости длины пружины от растягивающей её силы (данные получены эмпирическим путём):

Растягивающая сила (кг)

0

5

10

15

20

25

Длина пружины (см)

13,0

14,2

15,4

16,6

17,8

19,0

При табличном задании функции можно находить и промежуточные значения переменных с помощью линейного интерполирования, но приближённо.

Многие приборы записывают непрерывно показания графически, например, термографы, барографы, сейсмографы, кардиографы и др.

В качества примера хорошо продемонстрировать учащимся запись барографа или термографа.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы