Составление и решение уравнений линейной регрессии
Уравнение имеет вид: У=1,11+0,0161х. Перейдем к исходным переменным х и у, выполнив потенцирование уравнения:
ỹ =101,11(10 0,0161)х, ỹ =12,99*1,038х – уравнение показательной кривой.
Графики построенных уравнений регрессии приведены на рис. 4.
Рисунок 4
9. Коэффициент детерминац
ии:
Для сравнения и выбора лучшей модели строим сводную таблицу результатов (табл. 6).
Таблица 6
Параметры Модель |
коэффициент детерминации |
средняя относительная ошибка аппроксимации |
коэффициент эластичности |
гиперболическая |
0,672 |
7,257 |
-0,250 |
степенная |
0,862 |
0,034 |
0,239 |
показательная |
0,829 |
3,82 |
0,010 |
Вывод: на основании полученных данных лучшей является степенная модель регрессии, т. к. она имеет наибольший коэффициент детерминации R2=0,862, т.е. вариация факторного признака У (объем выпуска продукции) на 86,2% объясняется вариацией фактора Х (объемом капиталовложений), и наименьшую относительную ошибку (в среднем расчетные значения для степенной модели отличаются от фактических данных на 0,034%). Также степенная модель имеет наибольший коэффициент эластичности, т.е. при изменении фактора на 1% зависимая переменная изменится на 0,24%, таким образом степенную модель можно взять в качестве лучшей для построения прогноза.
Задача 2а и 2б
Имеются два варианта структурной формы модели, заданные в виде матриц коэффициентов модели. Необходимо для каждой матрицы записать системы одновременных уравнений и проверить их на идентифицируемость.
Задача 2а
Решение.
Запишем систему одновременных уравнений:
у1= b12 у2+ b13 у3+ a12 х2+ a13 х3
у2= b23 у3+ a21 х1+ a22 х2+ a24 x4
у3 = b32 у2+ a31 х1+ a32х2+a33х3
Проверим каждое уравнение на выполнение необходимого и достаточного условия идентификации.
1) В первом уравнении три эндогенные переменные у1, у2, у3 (Н=3). В нем отсутствуют экзогенные переменные х1, х4 (D=2). Необходимое условие идентификации D+1=H, 2+1=3 выполнено.
Для проверки на достаточное условие составим матрицу из коэффициентов при переменных х1 и х4 (табл. 7)
Таблица 7
Уравнения, из которых взяты коэффициенты при переменных |
Переменные | |
х1 |
х4 | |
2 |
a21 |
a24 |
3 |
a31 |
0 |
Определитель матрицы не равен нулю, а ранг матрицы равен 2. Значит, достаточное условие выполнено, первое уравнение идентифицируемо.
2) Во втором уравнении две эндогенные переменные у2, у3 (Н=2). В нем отсутствует экзогенная переменная х3 (D=1). Необходимое условие идентификации D+1=H, 1+1=2 выполнено.
Для проверки на достаточное условие составим матрицу из коэффициентов при переменных у1 и х3 (табл. 8)
Таблица 8
Уравнения, из которых взяты коэффициенты при переменных |
Переменные | |
у1 |
х3 | |
1 |
-1 |
a13 |
3 |
0 |
a33 |
Определитель матрицы не равен нулю, а ранг матрицы равен 2. Значит, достаточное условие выполнено, второе уравнение идентифицируемо.
3) В третьем уравнении две эндогенные переменные у2, у3 (Н=2). В нем отсутствует экзогенная переменная х4 (D=1). Необходимое условие идентификации D+1=H, 1+1=2 выполнено.
Для проверки на достаточное условие составим матрицу из коэффициентов при переменных у1 и х4 (табл. 9)
Таблица 9
Уравнения, из которых взяты коэффициенты при переменных |
Переменные | |
у1 |
х4 | |
1 |
-1 |
0 |
2 |
0 |
a24 |
Определитель матрицы не равен нулю, а ранг матрицы равен 2. Значит, достаточное условие выполнено, третье уравнение идентифицируемо.
Вывод: все уравнения системы идентифицируемы, систему можно решать.
Задача 2б
Решение
Запишем систему уравнений:
у1=b13у3+a11 х1+a13 х3+a14 х4
у2= b21 у1+b23 у3+a22 х2+a24 х4
у3=b31 у1+a31 х1+a33 х3+a34 х4
Проверим каждое уравнение на выполнение необходимого и достаточного условия идентификации.
1) В первом уравнении две эндогенные переменные у1, у3 (Н=2). В нем отсутствует экзогенная переменная х2 (D=1). Необходимое условие идентификации D+1=H, 1+1=2 выполнено.
Для проверки на достаточное условие составим матрицу из коэффициентов при переменных у2 и х2 (табл. 10)
Таблица 10
Уравнения, из которых взяты коэффициенты при переменных |
Переменные | |
у2 |
х2 | |
2 |
-1 |
a22 |
3 |
-1 |
0 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели