Составление и решение уравнений линейной регрессии
;
Уравнение линейной регрессии имеет вид: у=11,78+0,76х
С увеличением объема капиталовложений на 1 млн. руб. объем выпускаемой продукции увеличится в среднем на 76 тыс. руб. Это свидетельствует об эффективности работы предприятия.
2. Вычисленные ос
татки и остаточная сумма квадратов представлены в таблице 1. Дисперсию остатков оценим по формуле:
– стандартная ошибка оценки. Построим график остатков (рис. 1)
Рисунок 1
3. Проверим выполнение предпосылок МНК на основе анализа остаточной компоненты (см. табл. 1).
Независимость остатков проверяется с помощью критерия Дарбина – Уотсона по формуле , т. к. =0,74, d1=1,08, d2=1,36, т.е. d<d1, значит ряд остатков содержит автокорреляцию.
Для обнаружения гетероскедастичности используем тест Голдфельда – Квандта:
1) Упорядочим наблюдения по мере возрастания переменной х.
2) Разделим совокупность на 2 группы по 5 наблюдений и для каждой определим уравнение регрессии. Воспользуемся инструментом Регрессия пакета Анализ данных, полученные результаты представлены в табл. 2.
Таблица 2
n |
у1 |
Предсказанное у1 |
е1 |
е12 |
у2 |
Предсказанное у2 |
е2 |
е22 |
1 |
13 |
13,81 |
-0,81 |
0,66 |
22 |
22,46 |
-0,46 |
0,21 |
2 |
15 |
16,52 |
-1,52 |
2,30 |
26 |
25,73 |
0,27 |
0,07 |
3 |
19 |
16,52 |
2,48 |
6,16 |
26 |
27,60 |
-1,60 |
2,57 |
4 |
20 |
21,25 |
-1,25 |
1,57 |
27 |
28,07 |
-1,07 |
1,15 |
5 |
21 |
19,90 |
1,10 |
1,21 |
30 |
27,14 |
2,86 |
8,20 |
сумма |
11,90 |
12,20 |
3) Определим остаточную сумму квадратов для первой и второй регрессии .
4) Вычислим отношение , т. к. Fнабл=0,98, Fкр(α,к1,к2)= Fкр(0,05,5,5) =5,05 (из таблицы критерия Фишера), Fнабл <Fкр, то гетероскедастичность отсутствует, предпосылка о равенстве дисперсий остаточных величии не нарушена.
4. Проверим значимость параметров уравнения регрессии с помощью t‑критерия Стьюдента Расчетные значения t‑критерия Стьюдента для коэффициента уравнения регрессии а1 приведены в четвертом столбце протокола Excel, полученном при использовании инструмента Регрессия (рис. 2).
Рисунок 2
Табличное значение t‑критерия Стьюдента 2,30. tрасч=6,92, так как tрасч>tтабл, то коэффициент а1 значим.
5. Значение коэффициента детерминации (R – квадрат) можно найти в таблице Регрессионная статистика (рис. 2). Коэффициент детерминации/ Он показывает долю вариации результативного признака под воздействием изучаемых факторов. Следовательно, около 85,7% вариации зависимой переменной (объем выпуска продукции) учтено в модели и обусловлено влиянием включенного фактора (объем капиталовложений).
Значение F – критерия Фишера можно найти в таблице протокола Excel (рис. 2), Fрасч=47,83. Табличное значение F – критерия при доверительной вероятности 0,05 равно 4,46, т. к. Fрасч>Fтабл, уравнение регрессии следует признать адекватным.
Определим среднюю относительную ошибку аппроксимации? в среднем расчетные значения у для линейной модели отличаются от фактических на 1% – хорошее качество модели.
6. Осуществим прогнозирование среднего значения показателя при уровне значимости , если прогнозное значения фактора Х составит 80% от его максимального значения.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели