Решетки субнормальных и f-субнормальных подгрупп
Следовательно, – циклическая группа порядка , где – некоторое простое число, , – натуральное число. Допустим, что . Обозначим через – регулярное сплетение циклических групп и соответственно порядков и .
По теореме 6.2.8 из [2] изоморфна некоторой подгруппе группы . Так как и , то ввиду теоремы 2.4 из [5] .
Рассмотрим регулярное сплетение , где . Тогда , где – элементарная абелева -группа. Так как , то . Из
следует что .
Рассмотрим в подгруппы и , где – база сплетения . Ясно, что -субнормальна в , . Кроме того, . Отсюда
Так как , то по лемме 3.1. Получили противоречие.
Следовательно, и – группа Шмидта. Если и , то по лемме 1.1.6 также является группой Шмидта. Таким образом, любая разрешимая минимальная не -группа является либо группой Шмидта, либо имеет простой порядок. Тогда по лемме 3.1.12 является наследственной формацией.
Покажем, что формация имеет такой локальный экран , что
p(F)p'(F)p(F)Действительно. Пусть – локальный экран формации . Так как для любого простого числа из , то . Покажем обратное.
Пусть – группа минимального порядка из . Так как – наследственная формация и – насыщенная формация, то – минимальная не -группа и . Теперь, согласно лемме 2.3
где – единственная минимальная нормальная подгруппа группы , причем – -группа, , а – минимальная не -группа. Как показано выше является либо группой простого порядка, либо группой Шмидта.
Пусть – группа простого порядка. Так как , то очевидно, что . Противоречие.
Пусть – группа Шмидта. Тогда – группа простого порядка, причем , . Так как , то очевидно, что
Отсюда следует, что . Получили противоречие. Следовательно .
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах