Решетки субнормальных и f-субнормальных подгрупп
получаем, что . Итак, , и .
Используя тождество Дедекинда, имеем
Если предположить, что , то . В этом случае
Так как , то не может быть -субнормальной подгруппой в . Следовательно, можно считать, что , .
Так как подгруппа -субнормальна в группе и , то из наследственности формации следует, что подгруппа -субнормальна в .
Так как формация обладает решеточным свойством для -субнормальных подгрупп, то – -субнормальная подгруппа группы . Кроме того, из и наследственности формации имеем . Обозначим , , и рассмотрим подгруппу . Если , то , что невозможно ввиду -субнормальности в подгруппы .
Пусть . Из , нормальности в и нормальности в следует, что нормальна в .
Так как
то
Таким образом получаем
Так как , то – подгруппа из . Тогда из -субнормальности в подгрупп и следует, что подгруппа
-субнормальна в . Это невозможно ввиду равенства . Значит, . Противоречие.
Докажем, что из 2) следует 3). Пусть , где – нормальная -подгруппа группы , . Так как
и , то . Из наследственности формации получаем, что подгруппа -субнормальна в . Ввиду леммы 2.6 подгруппа теперь -субнормальна в , . Так как выполняется условие 2) леммы, то
Следовательно, – формация Фиттинга.
Пусть – -субнормальная -подгруппа группы . Ввиду леммы 2.5 подгруппа -субнормальна в для всех . Так как выполняются условия 2) леммы, то
Другие рефераты на тему «Математика»:
- Решение задач по курсу теории вероятности и математической статистики
- Доказательство Великой теоремы Ферма с помощью метода бесконечных (неопределенных) спусков
- Основные понятия алгебры множеств
- Математические расчеты
- Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых третьего и первого порядков
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах