Решетки субнормальных и f-субнормальных подгрупп
Итак, нормальна в , а значит, и нормализуют подгруппу . По лемме 1.10 dth=32 height=17 src="images/referats/7473/image109.png">и субнормальны в . Так как и , то ввиду выбора получаем . Следовательно, , откуда вытекает, что . Теорема доказана.
Объединим теоремы 1.8 и 1.11 в один результат.
Теорема (Виландт). Множество всех субнормальных подгрупп группы образует подрешетку решетки .
Отметим одно часто используемое приложение теорем 1.4 и 1.12.
Теорема. Пусть – некоторое непустое множество субнормальных подгрупп группы , удовлетворяющее следующим условиям:
1) если и , то ;
2) если , , , , то .
Тогда для любой подгруппы .
Доказательство. Возьмем произвольную подгруппу из . Если не нормальна в , то по теореме 1.4 найдется такой элемент , что , , . По условиям 1) и 2) , . Если не нормальна в , то найдется такой, что , , . Тогда и . Если не нормальна, то описанную процедуру применяем к . Так как конечна, то этот процесс завершится построением нормальной подгруппы , представимой в виде , где – некоторые элементы из . Очевидно, , и теорема доказана.
Следствие. Если – непустой радикальный класс, то содержит все субнормальные -подгруппы группы .
Доказательство. Пусть – множество всех субнормальных -подгрупп из . Ввиду теоремы 1.12 легко заметить, что удовлетворяет условиям 1) и 2) теоремы 1.13.
Следствие. Для любой субнормальной подгруппы группы справедливы следующие утверждения:
1) если – -группа, то ;
2) если нильпотентна, то ;
3) если -нильпотентна, то ;
4) если разрешима, то .
2. Минимальные не -группы
Лемма [3]. Пусть , где – локальная формация. Тогда справедливы следующие утверждения:
1) группа монолитична с монолитом
2) – -группа для некоторого простого ;
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах