Решетки субнормальных и f-субнормальных подгрупп
1) если – подгруппа группы и , то -субнормальна в ="images/referats/7473/image003.png">;
2) если -субнормальна в , – подгруппа группы , то -субнормальна в ;
3) если и -субнормальные подгруппы , то – -субнормальная подгруппа ;
4) если -субнормальна в , а -субнормальна в , то -субнормальна в ;
5) если все композиционные факторы группы принадлежат формации , то каждая субнормальная подгруппа группы является -субнормальной;
6) если – -субнормальная подгруппа группы , то -субнормальна в для любых .
Лемма. Пусть – непустая формация, – подгруппа группы , – нормальная подгруппа из . Тогда:
1) если -субнормальна в , то -субнормальна в и -субнормальна в ;
2) если , то -субнормальна в тогда и только тогда, когда -субнормальна в .
3. Формации с решеточным свойством
Лемма [1]. Пусть – наследственная формация. Тогда следующие утверждения эквивалентны:
1) обладает решеточным свойством для -субнормальных подгрупп;
2) группа принадлежит , если , – -субнормальные -подгруппы группы ;
3) – формация Фиттинга и всякая -субнормальная -подгруппа группы содержится в -радикале этой группы.
Установим, что из 1) следует 2).
Пусть – контрпример минимального порядка. В этом случае , где -субнормальная -подгруппа группы , , и не принадлежит . Пусть – минимальная нормальная подгруппа группы . Все условия леммы для фактор-групп выполняются, поэтому в силу выбора имеем, что . В виду теоремы 4.3 из [7] формация является насыщенной. Поэтому группа имеет единственную минимальную нормальную подгруппу и .
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах