Решетки субнормальных и f-субнормальных подгрупп

Если , то – простая группа. Так как и -субнормальная подгруппа группы width=17 height=19 src="images/referats/7473/image003.png">, , то либо , либо . Значит, . Противоречие с выбором группы .

Пусть . Рассмотрим подгруппы и . Так как – собственная -субнормальная подгруппа и , то нетрудно видеть, что – собственная подгруппа , . Покажем, что .

Рассмотрим два случая.

1. Пусть – абелева группа. Тогда -группа, – простое число. Так как и подгруппа -субнормальна в , то по лемме 2.6 получаем , .

2. Пусть – неабелева группа. В этом случае

есть прямое произведение изоморфных неабелевых простых групп и .

Рассмотрим подгруппу . Так как подгруппа -субнормальна в , то ввиду леммы 2.4 и подгруппа -субнормальна в группе . Пусть

Ввиду леммы 2.5 подгруппа -субнормальна в для любого из . Так как формация обладает решеточным свойством для -субнормальных подгрупп, то -субнормальная подгруппа . Кроме того, из следует, что . Если , то . Получили противоречие с . Значит, . Так как нормальна в , то нормальна в . Но

где – неабелева простая группа и для всех . Поэтому

Из и наследственности формации следует, что . Но тогда . Далее, так как , то по лемме 2.5 подгруппа -субнормальна в . Значит, она -субнормальна и в , . Тогда из получаем что

Пусть – добавление к подгруппе в группе . Так как , то . В силу насыщенности формации из

и

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы