Элементы статистики, комбинаторики и теории вероятностей в основной школе

· Понятие и примеры случайных событий. Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.

Перечисленный круг вопросов представляет собой некоторый минимум, доступный учащимся основной школы и достаточный для формирования у них первоначальных вероятностно-статистических представлений. [25]

Государственным стандартом

образования предусмотрен обязательный минимум, и изложены основные требования к уровню подготовки выпускников.

Для основного общего образования, по теме – Элементы логики, комбинаторика, статистика и теория вероятностей на данный момент установлен следующий обязательный минимум:

Множества и комбинаторика. Множества, элементы множества. Подмножества. Объединение и пресечение множеств. Диаграммы Эйлера. Примеры решения комбинаторных задач: перебор вариантов, правило умножения.

Статистические данные. Представление данных в виде таблиц, диаграмм, графиков. Средние результаты измерений. Понятие о статистическом выводе на основе выборки. Понятие и примеры случайных событий.

Вероятность. Частота событий, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.

Требования к уровню подготовки выпускника:

В результате изучения математики ученик должен знать и понимать вероятностный характер многих закономерностей окружающего мира, примеры статистических закономерностей и выводов.

В результате изучения элементов логики, комбинаторики, статистики и теории вероятностей учащийся должен уметь:

· Извлекать информацию представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики.

· Решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения.

· Вычислять среднее значения результатов измерений

· Находить частоту события, используя собственные наблюдения и готовые статистические данные

· Находить вероятность случайных событий в простейших ситуациях.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

· Анализа реальных числовых данных, представление в виде диаграмм, графиков, таблиц

· Решение учебных и практических задач, требующих систематического перебора вариантов

· Сравнение шансов наступления случайных событий, оценка вероятности случайного события в практических ситуациях, сопоставление модели с реальной ситуацией

· Понимание статистических утверждений

2. Анализ статей из журналов «Математика в школе».

Журналы «Математика в школе» содержат ряд статей, в которых рассматриваются различные вопросы по данной теме.

О необходимости изучения в школе элементов теории вероятностей и статистики речь идет очень давно. И авторы многих статей говорят о необходимости введения стохастической линии в основную школу.

Бунимович Е.А [2] в защиту этой необходимости приводит следующие аргументы:

1. Социально-экономическая ситуация.

«Нужно научить детей жить в вероятностной ситуации. То есть нужно научить их извлекать, анализировать и обрабатывать информацию, принимать обоснованные решения в разнообразных ситуациях со случайными исходами. Ориентация на многовариантность возможного развития реальных ситуаций и событий, на формирование личности, способной жить и работать в сложном, постоянно меняющемся мире, с неизбежностью требует развития вероятностно-статистического мышления у подрастающего поколения».

2. Универсальность вероятностных законов.

«Они стали основой описания научной картины мира. Современная физика, химия, биология, демография, социология, лингвистика, философия, весь комплекс социально-экономических наук построен и развивается на вероятностно-статистической базе.

Подросток в своей жизни ежедневно сталкивается с вероятностными ситуациями. Игра и азарт составляют существенную часть жизни ребенка. Круг вопросов, связанных с соотношениями понятий «вероятность» и «достоверность», проблема выбора наилучшего из нескольких вариантов решения, оценка степени риска и шансов на успех, представление о справедливости и несправедливости в играх и в реальных жизненных коллизиях – все это, несомненно, находится в сфере реальных интересов подростка».

3. Развивающая роль стохастики.

«Преподавание любого раздела математики благотворно сказывается на умственном развитии учащихся, поскольку прививает им навыки ясного логического мышления, оперирующего четко определенными понятиями. Все сказанное в полной мере относится и к преподаванию теории вероятностей, но обучение «законам случая» играет несколько большую роль и выходит за рамки обычного. Слушая курс теории вероятностей, учащийся познает, как применять приемы логического мышления в тех случаях, когда приходится иметь дело с неопределенностью (а такие случаи возникают на практике почти всегда)».

4. Прикладной характер законов теории вероятностей.

«Выводы теории вероятностей находят применение в повседневной жизни, науке, технике и т.д. В повседневной жизни нам постоянно приходится сталкиваться со случайностью, и теория вероятностей учит нас, как действовать рационально с учетом риска, связанного с принятием отдельных решений. Хорошим примером применения теории вероятностей в повседневной жизни может служить выбор наиболее целесообразной формы страхования. При планировании, например, семейного бюджета зачастую приходится оценивать расходы, носящие в известной мере случайный характер. Знакомство на том или ином уровне с законами случая необходимо каждому. Применение теории вероятностей в науке, технике, экономике и т.д. приобретает все возрастающее значение. Именно поэтому у все большего числа людей в процессе работы возникает необходимость в изучении теории вероятностей. Современный образованный человек независимо от профессии и рода занятий должен быть знаком с простейшими понятиями теории вероятностей. В наши дни, когда прогноз погоды содержит сообщение о вероятности дождя на завтра, каждый должен знать что собственно это означает».

5. Взаимосвязь математики с действительностью.

Помимо значения обучения элементам стохастики, не меньше внимания уделено вопросам о том, что именно и каким образом изучать школьникам.

Возникает много вопросов о содержании, методах, средствах. Разные статьи предлагают различные методические рекомендации.

Бунимович Е.А. делает следующие методические рекомендации при рассмотрении некоторых вопросов теории вероятностей.

«На первом этапе обучения можно отметить, что события достоверные и невозможные лучше не относить к случайным событиям. Опыт преподавания данного материала показал, что школьникам 10-12 лет трудно считать случайными те события, которые происходят всегда, либо не происходят никогда. Понятие случайного события соответственно уточняется на более поздних ступенях обучения. Чтобы доказать, что данное событие – случайное, предлагается привести пример такого исхода, когда событие происходит, и пример такого исхода, когда оно не происходит.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы