Элементы статистики, комбинаторики и теории вероятностей в основной школе

Необходимо развить у учащихся понимание степени случайности различных явлений и событий. Качественная оценка вероятности события приводит к тому, что при обсуждении в классе на один и тот же вопрос может быть дано несколько разных ответов, которые могут считаться верными, что непривычно на уроке математики и для ученика и для учителя. Например, при обсуждении вероятности наступления события «ва

м подарят на день рождения собаку» ученики в зависимости от личных обстоятельств могут дать ответы:

«это маловероятное событие»,

«это очень возможное событие»,

«это достоверное событие».

При решении таких задач главное – приводимая аргументация, понимание школьником смысла используемых понятий. Если аргументация вполне логична и разумна, ответ следует считать верным». [2]

О формировании первоначальных стохастических представлений в своей статье говорит Селютин В.Д. [31].

«5-6 классы являются подготовительным этапом, перед изучением стохастики, здесь идет процесс «интуитивных накоплений». Как же следует организовать этот процесс? Прежде всего, путем эксперимента, проводимого самими учащимися. Как утверждает А.Плоцки, «из-за своей специфики стохастика может быть математикой, понимаемой каждым учеником как математика, открытая им самим». Одна из важнейших целей обучения школьников элементам стохастики состоит в целенаправленном развитии идеи о том, что в природе наличествуют статистические закономерности. Важно помочь учащимся правильно осознать реальную действительность, открыть для себя вероятностную природу окружающего мира, показать, что в мире случайностей можно не только хорошо ориентироваться, но и активно действовать.

С помощью каких же средств можно организовать формирование первоначальных стохастических представлений школьников? К таковым можно отнести: стохастические игры, эксперименты со случайными исходами, статистические исследования, мысленные статистические эксперименты и моделирование.

Для проведения экспериментов пока возможно использование подручных средств: кубики, пуговицы, кнопки, самодельные вертушки и т.п. С введением стохастической линии в основной курс средней школы, со временем должны появиться и минимальные наборы математического демонстрационного учебного оборудования». [31]

Проводя эксперименты, учащиеся могут заметить, что те или иные события происходят чаще или реже, относительно других. Таким образом, можно перейти к понятию частоты, а затем и к статистическому определению вероятности.

При классическом подходе определение понятия вероятности для некоторых событий сводится к более простому понятию – равновозможности элементарных событий. А это понятие основано на интуитивном воображении человеком тех условий испытания, которые вроде достоверно определяют эту равновозможность. Но не каждое испытание поддается такому воображению. Например, не может быть и речи о равновозможных исходах испытания, состоящего в подбрасывании неправильной игральной кости, центр тяжести которой сознательно смещен с геометрического центра.

Из этого вытекает ограничение применения классической вероятности. Классическое определение вероятности «работает» лишь тогда, когда имеется конечное число равновозможных исходов. На практике мы часто встречаемся с ситуациями, где нет симметрии, предопределяющей равновозможность исходов. В таких случаях приходится определять вероятность частотным путем (статистическая вероятность) [34].

По обучению комбинаторике, тоже нет единого мнения.

В статье Ткачевой М.В. [35] содержатся следующие замечания по обучению комбинаторике.

«На первом этапе при изучении комбинаторики следует выработать у учащихся умение составлять комбинаторные наборы и начать с самого простого – составление комбинаторных наборов методом непосредственного перебора. В возрасте 11-12 лет дети способны решать простейшие комбинаторные задачи на целенаправленный перебор небольшого числа элементов определенного множества и составлять всевозможные комбинации (с повторениями и без повторений) из 2-3 элементов. Операция перебора раскрывает идею комбинирования, служит основой для формирования комбинаторных понятий и хорошей подготовкой к выводу комбинаторных формул и закономерностей.

После того как учащиеся научаться составлять наборы из элементов заданного множества по заданному свойству, на первый план выходит задача по подсчету количества возможных наборов. Такие комбинаторные задачи решаются с помощью рассуждений, раскрывая принцип умножения. Но акцент нужно сделать не на формальном его применении, а на содержательных рассуждениях и понимании сути поставленного в задаче вопроса. Принцип умножения в дальнейшем используется для выведения формул.

Часто подсчет вариантов облегчают графы. Одним из видов графов является дерево возможных вариантов, которое является хорошей наглядной иллюстрацией правила умножения.

Таким образом, построение дерева возможных вариантов является одним из способов решения комбинаторных задач. Такая наглядность помогает лучше понять принципы составления наборов (помогает составлять и упорядочивать наборы). Но такую наглядность возможно использовать в задачах с небольшим количеством возможных вариантов, либо в задачах, для которых дерево возможных вариантов является правильным.

Методом перебора, принципа умножения и построение дерева возможных вариантов – это все методы, которые позволяют решать комбинаторные задачи без использования формул. Отсутствие формул при решении комбинаторных задач позволяет учащимся лучше понять суть решения, лучше освоить способы составления и подсчета возможных наборов. Уже после этого можно вывести или ввести некоторые формулы, которые учащийся должен применять осознанно и понимать принцип их действия». [35]

Спорным остается вопрос и о введении основных комбинаторных понятий: сочетания, перестановки и размещения. Все ли вводить, нужно ли вводить их определения, или достаточно описания.

На данный момент можно говорить о наличии некоторого опыта по рассматриваемой теме. Так как этим вопросом занимаются уже давно, то естественно, что были предприняты некоторые попытки введения этого материала или хотя бы его элементов. Некоторые статьи содержат информацию о различных опытах и экспериментах по данным вопросам.

В статье Бунимовича Е.А. [2] рассказывается об экспериментах проведенных автором на базе московской гимназии №710, ярославской гимназии №20 и калужской гимназии №2. В них исследовались вероятностные представления школьников старших профильных классов, которые еще не изучали вероятностный раздел. Результаты исследования показали, что даже хорошее знание и понимание других разделов математики само по себе не обеспечивает развития вероятностного мышления. Также опыт показал , что в возрасте начальных классов еще многое в представлениях ученика о мире недостаточно сформировано, не хватает и математического аппарата для объяснения представлений о вероятности. В то же время основы описательной статистики, таблицы и столбчатые диаграммы, а также основы комбинаторики возможно и даже необходимо вводить в курс начальной школы. А начинать изложение основ теории вероятности в старших классах – малоэффективно. [2]

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы