Процесс обработки статистикой информации

Проверим значимость коэффициента корреляции, т.е. возможность отвергнуть теорию о некоррелированности рассматриваемых величин.

Для этого определим коэффициент (6)

Для нашего примера

В справочнике найдем табличное значение критерия значимости. При задан

ной вероятности Р=0,95 и N=30 . Условие, при котором отвергают гипотезу о некоррелированности исследуемых величин . Условие выполняется, следовательно гипотезу некоррелированности признаков можно отвергнуть с заданным уровнем надежности.

Построение линейной регрессионной модели.

Наибольшее распространение получил метод наименьших квадратов МНК, при использовании которого ставится требование, чтобы сумма квадратов разностей между эмпирическими и теоретическими значениями была минимальной.

Оценка линейности связи

Для решения поставленной задачи используем дисперсионный анализ. Если теоретическая линейная регрессия действительно выражает форму эмпирической связи, то отклонения эмпирической линии регрессии от теоретической будут случайными.

В случае если в действительности связь не прямолинейна, отклонения не будут случайными, а будут отражать кривизну эмпирической регрессии. Поэтому вопрос о линейной регрессии может быть решен путем сравнения неслучайных и случайных отклонений.

Неслучайные отклонения характеризуются дисперсией отклонения теоретической регрессии от среднего. Случайные отклонения характеризуются дисперсией остатка.

Определение общей дисперсии по результативному признаку

(7.1)

(7.2)

где К1 - число степеней свободы, приходящееся на регрессию; равно числу независимых переменных (для парной регрессии К1=1)

К2-число степеней свободы, приходящееся на остаток (К2=N - К1-1=28)

Y - теоретическое значение результативного признака, найденное по уравнению парной регрессии.

Таблица 9 - Расчет общей дисперсии

Х

Y

Х

Y

1635,72

222

2800,59

170,16

819,40

167

5,89

2222,63

1439,29

209

1568,33

682,48

811,53

166

8,76

2240,72

1408,65

207

1408,12

812,72

792,50

165

18,06

2276,79

1253,17

196

728,12

944,65

785,89

165

22,07

2344,56

1203,06

193

556,31

1522,60

766,24

163

36,36

2351,48

1163, 19

190

436,09

1561,01

766,24

163

36,36

2393,30

1080,65

185

233,67

1714,03

763,77

163

38,41

3162,82

1039,45

182

156,08

1803,76

762,01

163

39,91

3768,14

970,11

177

60,72

1809,81

744,16

162

56,66

3800,80

958,67

176

49,23

1936,29

741,97

162

58,92

5141,12

944,78

175

36,90

1944,45

705,47

159

103,03

5882,55

883, 19

171

3,60

2045,98

694,35

158

118,90

7402,33

869,62

170

0,96

2134,42

549,94

149

428,32

7644,66

866,90

170

0,63

2157,76

527,98

147

492,14

8878,51

828,83

167

3, 19

2216,69

514, 19

146

534,51

10042,88

           

10040,86

93010,09

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы