Процесс обработки статистикой информации
Проанализировать данные динамического ряда по второму леспромхозу:
1) Исчислить базисным методом абсолютный прирост, коэффициент роста, темп роста, темп прироста и значение одного процента прироста в абсолютном выражении
2) Представить данные динамики объема вывозки древесины за 1976-1985гг. графически
3) Провести выравнивание динамического ряда по способу наименьших квадратов. <
p>Абсолютный прирост - разность между сравниваемым уровнем и уровнем более раннего периода, принятым за базу сравнения. При расчете базисным методом за базу принимают значение одного и того же уровня, например, начального.
∆i=yi - y0, (13)
∆1=172-169=3 (тыс. м3/год)
∆2=183-169=14 (тыс. м3/2года)
∆3=189-169=20 (тыс. м3/3года)
∆4=198-169=29 (тыс. м3/4года)
∆5=212-169=43 (тыс. м3/5лет)
∆6=235-169=66 (тыс. м3/6лет)
∆7=249-169=80 (тыс. м3/7лет)
∆8=268-169=99 (тыс. м3/8лет)
∆9=301-169=132 (тыс. м3/9лет) Коэффициент роста Ki определяется как отношение данного уровня к предыдущему или базисному, показывает относительную скорость изменения ряда. Если коэффициент роста выражается в процентах, то его называют темпом роста.
Темп роста - отношение сравниваемого уровня (боле позднего) к уровню, принятому за базу сравнения (более раннему). Данный показатель говорит о том, сколько процентов составил сравниваемый уровень по отношению к уровню, принятому за базу, или во сколько раз сравниваемый уровень больше уровня, принятого за базу.
Ki/0 = yi/y0, (14)
K1/0=172/169=1,018 (раз) рост 1,8%
K2/0=183/169=1,083 (раз) рост 8,3%
K3/0=189/169=1,118 (раз) рост 11,8%
K4/0=198/169=1,171 (раз) рост 17,1%
K5/0=212/169=1,254 (раз) рост 25,4%
K6/0=235/169=1,391 (раз) рост 39,1%
K7/0=249/169=1,473 (раз) рост 47,3%
K8/0=268/169=1,586 (раз) рост 58,6%
K9/0=301/169=1,781 (раз) рост 78,1%
Темп прироста (относительный прирост) - отношение абсолютного изменения к базисному уровню или
Тпi=Ki*100-100, (15), Тп1=1,018*100-100=1,8 %
Тп2=1,083*100-100=8,3 %
Тп3=1,118*100-100=11,8 %
Тп4=1,171*100-100=17,1 %
Тп5=1,254*100-100=25,4 %
Тп6=1,391*100-100=39,1 %
Тп7=1,473*100-100=47,3 %
Тп8=1,586*100-100=56,8 %
Тп9=1,78*100-100=78,1 %
Абсолютное значение 1% прироста равно сотой части базисного уровня 132/78=1,69 (тыс. м3) или 169/100=1,69 (тыс. м3)
Простейшей системой корреляционной связи является линейная связь между двумя признаками - парная линейная корреляция.
Практическое ее значение в том, что есть системы, в которых среди всех факторов, влияющих на результативный признак, выделяется один важнейший фактор, который в основном определяет вариацию результативного признака. Уравнение парной линейной корреляционной связи называется уравнением парной регрессии
= а + bt, (16)
где - среднее значение результативного признака;
t - порядковый номер периодов или моментов времени;
a - свободный член уравнении;
b - коэффициент регрессии, измеряющий среднее отношение отклонения результативного признака от его средней величины к отклонению факторного признака от его средней величины на одну единицу его измерения.
Параметры уравнения (16) рассчитываются методом наименьших квадратов (МНК). Система нормальных уравнений в данном случае имеет вид:
Исходное условие МНК для прямой линии имеет вид:
Поиск параметров уравнения можно упростить, если отчет времени производить так, чтобы сумма показателей времени изучаемого ряда динамики была равна нулю (). При четном числе уровней динамического ряда (как в нашем случае) периоды верхнее половины ряда (до середины) нумеруются - 1, - 3, - 5 и т.д., а нижней - +1, +3, +5 и т.д. При этом условии будет равна нулю, и система нормальных уравнений преобразуется следующим образом:
Откуда
= 217,6 и = 169,01
Расчет параметров уравнения прямой представлен в таблице 12.
Таблица 12
Годы |
Объем выработки, тыс. м3 у |
Условное обозначение периодов, t |
у*t |
t2 |
Выровненные уровни ряда динамики, тыс. м3 |
2001 |
169 |
-9 |
-1521 |
81 |
153,7273 |
2002 |
172 |
-7 |
-1204 |
49 |
167,9212 |
2003 |
183 |
-5 |
-915 |
25 |
182,1152 |
2004 |
189 |
-3 |
-567 |
9 |
196,3091 |
2005 |
198 |
-1 |
-198 |
1 |
210,503 |
2006 |
212 |
+1 |
212 |
1 |
224,697 |
2007 |
235 |
+3 |
705 |
9 |
238,8909 |
2008 |
249 |
+5 |
1245 |
25 |
253,0848 |
2009 |
268 |
+7 |
1876 |
49 |
267,2788 |
2010 |
301 |
+9 |
2709 |
81 |
281,4727 |
Итого |
2176 |
2342 |
330 |
2176 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели