Построение моделей статики по методике активного эксперимента

1.3 Проверка воспроизводимости эксперимента

Проверка воспроизводимости эксперимента есть не что иное, как проверка выполнения второй предпосылки регрессионного анализа об однородности выборочных дисперсий . Задача состоит в проверке гипотезы о равенстве генеральных дисперсий при опытах соответственно в точках . Оценки дисперсий находят по известной формуле

. (4)

Рассчитанные для рассматриваемого примера по формуле (4) значения занесены в последний столбец табл. 1.2.

Так как все оценки дисперсий получены по выборкам одинакового объема т = 5, то число степеней свободы для всех них одинаково и составляет

n1вос = m – 1. (5)

В этом случае для проверки гипотезы об однородности оценок дисперсий следует пользоваться критерием Koxpэнa, который основан на законе распределения отношения максимальной оценки дисперсии к сумме всех сравниваемых оценок дисперсий, т.е.

. (6)

Если вычисленное по данным эксперимента (эмпирическое) значение критерия G окажется меньше критического значения Gкр, найденного по таблице для n1вос = m – 1 и n2вос = N и выбранного уровня значимости qвос = 0,05 (в данном случае Gкр=0,391), то гипотеза об однородности выборочных дисперсий отвечает результатам наблюдений.

1.4 Получение математической модели объекта

При ПФЭ получаются независимые оценки b0, bi, bil соответствующих коэффициентов модели b0, bi, bil, т.е. b0 ® b0, bi ® bi, bil ® bil. Эти оценки легко найти по формулам

, , , (9)

, . (10)

Таблица 1.3

b0

204,7275

b1

15,9775

b2

13,8275

b3

60,0975

b12

0,4075

b13

4,1575

b23

2,6575

b123

0,2275

Рассчитанные значения коэффициентов приведены в таблице 1.3.

После определения оценок b коэффициентов регрессии необходимо проверить гипотезы об их значимости, т.е. проверить соответствующие нуль-гипотезы b = 0. Проверку таких гипотез производят с помощью критерия Стьюдента, эмпирическое значение которого

, (11)

где

– (12)

дисперсия оценки b коэффициента уравнения регрессии. Если найденная величина параметра ti превышает значение tкр, определенное из таблицы для числа степеней свободы nзн = N(m – 1), при заданном уровне значимости qзн = 0,05, то проверяемую нуль-гипотезу Н0: b = 0 отвергают и соответствующую оценку bi коэффициента признают значимой. В противном случае, нуль-гипотезу не отвергают и оценку b считают статистически незначимой, т.е. b = 0.

Рассчитанные значения критерия и значимость коэффициентов указаны в таблице 1.4.

Таблица 1.4

b0

t0

247,489

tтабл=2,036

значимый

b1

t1

19,31473

 

значимый

b2

t2

16,71565

 

значимый

b3

t3

72,65008

 

значимый

b12

t12

0,492615

 

незначимый

b13

t13

5,025878

 

значимый

b23

t23

3,212573

 

значимый

b123

t123

0,275018

 

незначимый

В данном варианте статистически незначимыми являются коэффициенты b12, b123, т.к. t12,t123<tтабл.

Математическую модель объекта составляют в виде уравнения связи отклика у и факторов xi, включающего только значимые оценки коэффициентов.

(13)

1.5 Проверка адекватности математического описания

Чтобы проверить гипотезу об адекватности математического описания опытным данным, достаточно оценить отклонение предсказанной по полученному уравнению регрессии величины отклика от результатов наблюдений в одних и тех же g-х точках факторного пространства.

Рассеяние результатов наблюдений вблизи уравнения регрессии, оценивающего истинную функцию отклика, можно охарактеризовать с помощью дисперсии адекватности

, (14)

где d – число членов аппроксимирующего полинома (значимых оценок коэффициентов модели объекта). Дисперсия адекватности определяется с числом степеней свободы

nад = N – d. (15)

Для данного варианта в соответствии с формулой (14) получим

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы