Теоретические основы математических и инструментальных методов экономики
Линейную регрессию, как математическую модель, можно использовать для того, чтобы делать какие-то прогнозы или предсказания. Например, любая курица, реальный вес которой значительно отличается от прогнозируемого среднего веса, может быть подвергнута обследованию. В результате последующего анализа могут быть выявлены причины отклонения веса и приняты меры по улучшению рациона питания или изменен
ию режима обслуживания и условий содержания.
Основным недостатком, присущим линейным эконометрическим моделям с двумя переменными, является их неадекватность к реальной действительности. Это вызвано, во-первых, тем, что статистическая (и, в частности, корреляционная) зависимость между экономическими величинами практически никогда не бывает в чистом виде линейной; во-вторых, многие факторы, влияющие на эти две переменные, остаются за пределами модели, т.е. оказываются неучтенными.
Основы системного анализа. Формулировка проблемы. Определение целей. Формирование критериев. Генерирование альтернатив. Выбор. Интерпретации и анализ ожидаемых результатов.
Системный анализ – методология исследования сложных объектов как систем. Эта методология есть эффективным способом решения сложных, не совсем четко сформулированных проблем. В задачах системного анализа любой объект рассматривается не как единое целое, а как система взаимосвязанных частей (объектов), их взаимосвязей и характеристик. Системный анализ можно свести к уточнению сложной проблемы, её структурированности относительно совокупности задач, которые решаются путем детализации целей, построение методов достижения этих целей с помощью экономико-математических и других методов
Системный анализ, зародившись в недрах общественных и биологических наук, перешел к "освоению" технических наук. Однако системы общественные и социальные, биологические и экологические, технические системы, информационные системы и системы научных знаний - это все же системы с совершенно различными характеристиками и даже с различной терминологией. Вследствие этого формулировки основных положений системного анализа применительно к конкретным классам систем иногда воспринимаются как слишком общие и даже иносказательные; с другой стороны, слишком специальная терминология конкретизирует, но одновременно и сильно сужает область применения выработанных формулировок. По-видимому, все же единственно разумным путем представляется "перевод" основных положений системного анализа с "общего" языка на язык конкретной области знаний, к которой относится исследуемый объект.
Первый шаг системного анализа - представление объекта в виде системы. Следующий шаг - системное исследование объекта в трех аспектах. В табл.2 отражены направления системного исследования и последовательность осуществления его этапов.
Наиболее успешно системный анализ применяют при изучении комплексных систем сложной структуры. Интуиции, квалификации одного человека, независимо от способностей и опыта, теперь уже недостаточно для управления сложными производственными системами. В дальнейшем руководителю придется решать проблемы не только в масштабе предприятия, но и в масштабе отрасли. Для принятия решений руководителю необходимо опираться на эмпирическую и фактическую информацию. Вместо экстраполяции прошлого опыта, как главного пути для принятия решений, теперь рекомендуется применять математические модели, информационные системы, составляющие основу системного анализа.
Системный анализ имеет сугубо практическую ориентацию. Однако, несмотря на множество различных примеров его удачного применения, пока не полностью разработана его методология. При решении каждой задачи выбирается своя методика, которая базируется на основах наук, законах логики и некоторых специфических процедурах. При этом можно выделить следующие основные особенности системного анализа:
· необходимость составления моделей исследуемой задачи (необязательно математической, можно физической или графической);
· успешное применение его для изучения многофакторных, комплексных систем, когда решения трудно достичь с помощью одного какого-либо раздела науки или простого соединения методов разных дисциплин;
· необходимость точной формулировки задачи: следует точно описать, какого результата, какой цели и при каких ограничениях стремятся достичь при решении задачи;
· постановка и решение проблемы для достижения желаемых результатов должны подчиняться целостному подходу: при решении частей проблемы все время необходимо иметь в виду цель решения всей системы.
Обоснование процесса решения проводится с помощью общей цели системы. Только при этом будет учтено явление синергизма- достижение более высокого результата действия системы по сравнению с аддитивным эффектом, т.е. по сравнению с суммой результатов действия отдельных элементов системы.
Задачи системного анализа можно разделить на две группы: математику и логику.
Математику системного анализа применяют при решении оптимизационных задач уже четко сформулированных, для чего составляются уравнения, описывающие связи множества переменных ограничений системы. При этом определяются количественные результаты функционирования системы с точки зрения выбранного критерия оптимальности.
Логика имеет компоненты, связанные с процессом принятия решений, выявлением таких проблем, как определение целей системы, путей их достижения, анализ внешних условий и ограничений.
Цель в системном анализе понимается как антипод проблемы: это то, что надо сделать для снятия проблемы (а решение - то, как это сделать).
Под критерием в системном анализе подразумевается способ сравнения альтернатив, т.е. любой их признак, значение которого можно зафиксировать количественно или качественно. В идеале построение критериев требует создания четкой иерархии целей с определением всех соотношений между ними; реально же может использоваться несколько критериев, описывающих одну цель по-разному и дополняющих друг друга.
При интеграции знаний наиболее существенны, на наш взгляд, 2 критерия "хорошей" ("правильной") интеграции:
· интегрировать любую информацию;
· исключать внутренние противоречия.
При моделировании помимо этих критериев следует использовать специфические критерии "хорошей" модели:
· универсальность - возможность описывать любое знание от отдельного факта до философского обобщения;
· связность - наличие закономерных причинных связей между событиями, процессами, явлениями;
· активность - возможность порождения нового знания, например, по схеме: факт - обобщенный факт - эмпирический закон - теоретический закон - новые факты.
Общий алгоритм:
· Определение конфигуратора.
· Постановка проблемы – отправной момент исследования. В исследовании сложной системы ему предшествует работа по структурированию проблемы.
· Расширение проблемы до проблематики, т.е. нахождение системы проблем, существенно связанных с исследуемой проблемой, без учета которых она не может быть решена.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели