Теоретические основы математических и инструментальных методов экономики
Однако главная задача экономической науки конструктивна: разработка научных методов планирования и управления экономикой. Поэтому распространенный тип математических моделей экономики - это модели управляемых и регулируемых экономических процессов, используемые для преобразования экономической действительности. Такие модели называются нормативными. Если ориентировать нормативные модели только н
а подтверждение действительности, то они не смогут служить инструментом решения качественно новых социально-экономических задач.
Специфика верификации нормативных моделей экономики состоит в том, что они, как правило, "конкурируют" с другими, уже нашедшими практическое применение методами планирования и управления. При этом далеко не всегда можно поставить чистый эксперимент по верификации модели, устранив влияние других управляющих воздействий на моделируемый объект.
Ситуация еще более усложняется, когда ставится вопрос о верификации моделей долгосрочного прогнозирования и планирования (как дескриптивных, так и нормативных). Ведь нельзя же 10-15 лет и более пассивно ожидать наступления событий, чтобы проверить правильность предпосылок модели.
Несмотря на отмеченные усложняющие обстоятельства, соответствие модели фактам и тенденциям реальной экономической жизни остается важнейшим критерием, определяющим направления совершенствования моделей. Всесторонний анализ выявляемых расхождений между действительностью и моделью, сопоставление результатов по модели с результатами, полученными иными методами, помогают выработать пути коррекции моделей.
Значительная роль в проверке моделей принадлежит логическому анализу, в том числе средствами самого математического моделирования. Такие формализованные приемы верификации моделей, как доказательство существования решения в модели, проверка истинности статистических гипотез о связях между параметрами и переменными модели, сопоставления размерности величин и т.д., позволяют сузить класс потенциально "правильных" моделей.
Внутрення непротиворечивость предпосылок модели проверяется также путем сравнения друг с другом получаемых с ее помощью следствий, а также со следствиями "конкурирующих" моделей.
Оценивая современное состояние проблемы адекватности математических моделей экономике, следует признать, что создание конструктивной комплексной методики верификации моделей, учитывающей как объективные особенности моделируемых объектов, так и особенности их познания, по-прежнему является одной из наиболее актуальных задач экономико-математических исследований.
Основы оптимального управления. Экономические процессы и их формализованное представление. Управление и управляющие воздействия. Общая постановка задачи оптимального управления.
Рассмотрим общую постановку задачи оптимизации экономических систем. Пусть имеется система, состояние которой может измениться в результате некоторого количества управляющих воздействий. Задавая эти воздействия, можно получить определенный процесс изменения состояния системы. При этом возникают две задачи: первая предполагает выбор таких воздействий на систему, чтобы происходящий процесс удовлетворял заданным условиям, такие процессы принято называть допустимыми), вторая задача - выбор из этого множества допустимых процессов наилучшего (оптимального) процесса.
Чтобы решать оптимизационные задачи с помощью математических методов, нужно сформулировать на математическом языке рассматриваемые процессы, ограничения, накладываемые на состояние системы и управляющие воздействия, а так же записать математические модели, описывающие эти процессы.
Введем некоторые понятия и обозначения. Рассмотрим множество М с элементами v, где v - пары вида v=(x, у), , , - некоторые заданные множества. Проекцией множества М на множество Х назовем подмножество Мx, обладающее тем свойством, что для каждого существует такой элемент , что пара содержится в множестве М.
Введем понятие сечения Мx множества М при данном x. Сечением Мx будем называть множество всех y, при которых пара принадлежит множеству М.
Введем понятие функционала, являющегося одним из главных в задачах оптимального управления. Будем говорить, что на множестве М задан функционал F , если известно правило, которое каждому элементу ставит в соответствие определенное действительное число F(v).
В общем виде задача оптимизации формулируется как задача отыскания минимального (или максимального) значения функционала F(v) на множестве М.
Предположим, что требуется минимизировать функционал F(v) на множестве М. Если решение этой задачи существует (обозначим его через ), то называется оптимальным элементом множества M, а величина - оптимальным значением функционала. Решения поставленной задачи F и будем записывать следующим образом:
.
Аналогично формулируется задача о нахождении максимального значения функционала.
Введем понятия точной нижней и верхней границы функционала. Точной нижней границей функционала на множестве М назовем такое число т, если:
1) для любого ;
2) существует последовательность , на которой .
Точная нижняя граница функционала обозначается
.
Последовательность {vs} называется минимизирующей последовательностью.
Точно так же определяется точная верхняя граница n функционала :
Назовем функционал ограниченным снизу (сверху) на множестве М, если существует такое число A, что при всех (). Если функционал является ограниченным снизу (сверху), то решение задачи о нахождении его точной нижней (верхней) границы существует, т. е. имеет место следующая теорема (приведем без доказательства): Пусть на множестве М задан ограниченный снизу функционал . Тогда реализуется одна из двух возможностей:
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели