Производство 1,2-дихлорэтана
Катализатор прямого хлорирования готовится растворением хлорного железа в дихлорэтане в емкости Е‑7. Хлорное железо (порошок) загружается через люк в предварительно подготовленную емкость из бочек вручную. Подача катализатора в реактор обеспечивается циркуляцией дихлорэтана между реактором и емкостью насосом. Самоциркуляция дихлорэтана между реактором и теплообменником осуществляется за с
чет термосифонного эффекта и барботирования этилена и хлора в потоке дихлорэтана. В результате экзотермической реакции прямого хлорирования, дихлорэтан нагревается до температуры 49–65°С и через верхнюю циркуляционную трубу поступает в трубное пространство теплообменника, проходит его сверху вниз, охлаждаясь при этом до температуры 40 – 56 °С и по нижней циркуляционной трубе возвращается в нижнюю часть реактора.
Температура дихлорэтана вверху реактора в пределах 49 – 65оС поддерживается с помощью регулятора температуры ТRА, регулирующий клапан которого установлен на трубопроводе подачи прямой оборотной воды в межтрубное пространство теплообменника Т‑1. При понижении температуры ниже 400С на АРМ срабатывает сигнализация.
Полученный дихлорэтан из реактора прямого хлорирования Р‑1 с температурой не выше 65 оС через переливной бак Б‑1 самотеком поступает в промежуточную емкость Е‑2 дихлорэтана-сырца, откуда насосом (в зависимости от уровня в емкости) подается на систему отмывки.
Уровень дихлорэтана в емкости Е‑2 поддерживается в пределах 30–70%. Часть потока дихлорэтана от насоса Н‑1 периодически подается в емкость Е‑7 для подачи катализатора в реактор Р‑1.
Абгазы из реактора прямого хлорирования Р‑1, с температурой не выше 65оС поступают в трубное пространство конденсатора Х‑2, где охлаждаются водой. Охлажденные абгазы разделяются на жидкую и газообразную фракции в фазоразделителе Ф‑2. Газообразная фракция направляется на санитарную колонну К‑110, а сконденсировавшийся дихлорэтан стекает в емкость Е‑2.
Полученный методом прямого хлорирования дихлорэтан-сырец содержит в себе непрореагировавший хлор, хлорное железо, хлористый водород, для удаления, которых он подвергается кислотной, щелочной и водной отмывке.
Узел щелочной отмывки дихлорэтана – сырца
Для удаления хлора, хлористого водорода и хлорного железа дихлорэтан-сырец с объемным расходом 3–30м3/час, температурой не выше 650С и давлением не более 0,72 МПА насосом Н‑1 через смесительное сопло С‑1 подается на первую ступень щелочной отмывки в емкость Е‑2. В смесительном сопле С‑1 происходит смешение дихлорэтана-сырца и циркуляционной воды, подаваемой насосом Н‑2.
В процессе смешения хлористый водород и хлорное железо растворяются в воде. Водно-дихлорэтановая смесь из форсунки поступает в разделительную емкость Е‑2, где происходит разделение слоев за счет разности плотностей жидкостей. Верхний водный слой, содержащий хлорное железо и хлористый водород, из емкости Е‑2 подается насосом Н‑2 на смесительное сопло С‑1, а часть потока отводится в емкость нейтрализации сточных вод Е‑109 с помощью регулятора уровня LRCА, чем достигается регулирование уровня раздела фаз в емкости Е‑2 в пределах 30–70%. Уменьшение уровня менее 30% и увеличение более 70%, на АРМ срабатывает сигнализация.
Для нейтрализации НСI, СI, FeCI3 в емкость Е‑2 подается 20%-ая щелочь со стадии 100 из емкости V‑108.
НС1 + NаОН àNаС1 + Н2О
С12 + 2NаОН àNаОС1 + NaС1 + Н2О
FеС13 + 3NаОН àFе (ОН)3 + 3NаС1
Узел водной отмывки дихлорэтана – сырца
Нижний слой дихлорэтана-сырца, содержащий щелочь и растворимые в воде соли из емкости Е‑2, через смесительное сопло С‑2 подается на водную отмывку в емкость Е‑3 В смесительном сопле С‑2 происходит смешение дихлорэтана-сырца, циркуляционной воды, подаваемой насосом Н‑3, свежей технологической воды, подаваемой насосом Н‑4 из сборника V‑215.
В процессе смешения щелочь и соли растворяются в воде. Водно-дихлорэтановая смесь из форсунки поступает в разделительную емкость Е‑3, где происходит разделение слоев за счет разности плотностей жидкостей. Верхний водный слой из емкости Е‑3 насосом Н‑3, подается на смесительное сопло С‑2, а часть этого потока с помощью регулятора уровня LRCA‑25306 отводится на стадию отпарки сточных вод в емкость V‑109. Таким образом, происходит регулирование уровня в емкости Е‑3 30 – 70%. Нижний слой отмытого от примесей дихлорэтана-сырца подается на промежуточный склад в танки дихлорэтана-сырца Т‑302 или на колонну обезвоживания дихлорэтана С‑301.
Объемный расход дихлорэтана-сырца из емкости Е‑3 в пределах 6 – 30 м3/ч, контролируется по прибору FR‑24210.
Кубовый продукт колонны обезвоживания С‑301 с массовой долей дихлорэтана не менее 99,1%, с массовой долей влаги не более 10-3 % (10 ppm) и массовой долей четыреххлористого углерода не более 0,25%. Далее высушенный дихлорэтан поступает на ректификацию, а затем на стадию пиролиза.
5. Материальный баланс
Химическое превращение сырья осуществляется в реакционных аппаратах, или реакторах. Процессы, протекающие в них, обеспечивают получение различных продуктов реакции и улучшение их качества. Конструкция реактора должна отвечать требованиям данного химического процесса.
Исходные данные:
Производительность по товарному ДХЭ 120000 т/год
Число рабочих часов в году 8040 часов
Общие потери 2,2%
Температура в реакторе 55 оС
Давление в реакторе 0,18 МПа
Продукты прямого хлорирования этилена, % масс.:
1,2 – дихлорэтан – 98
1,1,2 – трихлорэтан – 1,8
Винилхлорид – 0,1
Хлористый этил – 0,1
Состав сырья:
Технический хлор, % об.:
Хлор – 98
Вода – 0,001
Кислород – 2
Технический этилен, % об.:
Этилен – 99,9
Метан – 0, 048
Этан – 0, 048
Пропилен – 0,005
5.1 Расчет материального баланса установки
Производительность установки с учетом потерь
Рассчитываем часовую производительность установки
С учетом состава технического ДХЭ
В реакторе протекают следующие реакции:
1. Образование 1,2 – дихлорэтана.
С2Н4 + 2Cl2 C2H4Cl2
2. Образование 1,1,2 – трихлорэтана
С2Н4 + Cl2 C2H3Cl3 + HCl
3. Образование винилхлорида
С2H4 + Cl2 C2H3Cl + HCl