Математическое моделирование в управлении

Рис. 6. Линии тренда.

Алгоритм содержит такие действия:

- разместить на рабочем листе Excel в двух смежных столбцах исходные данные таким образом, чтобы первым был независимый показатель;

- Вставка – Диаграмма – Точечная (первый вариант) – Далее;

- на закладке Диапазон данных ввести диапазон , занимаемый всей таблицей, для чего выделить мышью оба столбца ;

- на закладке Ряд ввести в поле Значения Xдиапазон значений независимой величины , а в поле Значения Yдиапазон значений величины, регрессию которой следует оценить (см.рис.7 );

Далее – на закладке Заголовки ввести заголовки осей и диаграммы – Далее – указать, где разместить диаграмму (на имеющемся листе) – Готово;

- откорректировать появившуюся диаграмму, особенно формат осей и надписи, для чего щелкнуть правой кнопкой мыши по оси или надписи и в появившемся маленьком диалоговом окне щелкнуть по пункту Формат оси (или надписи) ;

- появившемся диалоговом окне Формат оси (или надписи ) выбрать нужную закладку и внести необходимые изменения – OK ;

- откорректировать полученное корреляционное поле, исключив резко выделяющиеся из общего множества отдельные точки;

Рис.7. Построение корреляционного поля.

- щелкнуть правой кнопкой мыши по любой точке диаграммы и в появившемся диалоговом окне выбрать пункт меню Добавить линию тренда;

- в появившемся диалоговом окне на закладке Тип выбрать тип зависимости: линейный или полиномиальный (указать порядок приближения);

- щелкнуть по закладке Параметры и в появившемся после этого диалоговом окне щелкнуть пункты показывать уравнение на диаграмме и поместить на диаграмму величину достоверности аппроксимации (R^2);

- записать уравнение регрессии, заменив yи xна имена результативного и факторного признаков соответственно и оценить значимость полученного уравнения с помощью R^2.

На рис.6 приведены: точечная диаграмма зависимости X6 от X4 и две линии тренда – линейная и нелинейная. Уравнение первой совпадает с уравнением линией регрессии, полученным с помощью инструмента Регрессия. Вторая имеет уравнение , т.е. оценку линии регрессии, такого вида:

.

Причем коэффициент детерминации в первом случае равен 0,3688 , а для кубической зависимости R2 = 0,4762 , т.е. предпочтительнее использовать полиномиальную зависимость как лучше согласующуюся со статистическими данными.

Для остальных двух отобранных пар факторных признаков необходимо выполнить такие же действия и получить аналогичные оценки функций регрессии.

§1.5 Регрессионный анализ трехмерной модели

Для исследования статистической зависимости одного результирующего признака от двух и более факторных признаков в Excelесть две возможности: инструмент Регрессия для случая линейной статистической зависимости и непосредственное применение метода наименьших квадратов в случае зависимости любого вида.

Алгоритм применения инструмента Регрессия отличается от описанного выше для случая двумерной модели только количеством исходных данных, размещаемых на рабочем листе и соответственно диапазоном входных параметров , вводимом в диалоговом окне Регрессия . Выходные данные также отличаются только количеством информации при сохранении их смысла.

Регрессионная статистика

         

Множественный R

0,762322

         

R-квадрат

0,581135

         

Нормированный R-квадрат

0,563682

         

Стандартная ошибка

50,23613

         

Наблюдения

51

         

Дисперсионный анализ

       
 

df

SS

MS

F

Значимость F

 

Регрессия

2

168064,8

84032,39

33,2977

8,51E-10

 

Остаток

48

121136,1

2523,668

     

Итого

50

289200,9

       
 

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Y-пересечение

225,7848

27,41026

8,237239

9,67E-11

170,6728

280,8968

X8

23,38168

10,96783

2,131842

0,038166

1,329382

45,43398

X4

-503,93

69,72031

-7,22788

3,29E-09

-644,112

-363,748

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы