Математическое моделирование в управлении
X6 = φ(X4); X8 = φ(X7); X5 = φ(X7) – ограничения.
Рис.3.Анализ парной корреляции.
§1.4 Регрессионный анализ двумерной модели
В среде Excel для двумерного случая линейной регрессии предусмотрено несколько инструментов : статистические функции (КОР
РЕЛ, ЛИНЕЙН, ТЕНДЕНЦИЯ и др.) ; инструмент Регрессия надстройки Пакет анализа ; графические средства при работе с диаграммой – построение линии тренда.
С помощью Пакета анализа можно получить искомую информацию , следуя такому алгоритму:
- разместить на рабочем листе Excel в двух смежных столбцах с соответствующими заголовками статистические данные по двум признакам, подлежащим исследованию (например, X4 и X6);
- Сервис – Анализ данных – Регрессия ;
- в появившемся диалоговом окне Регрессия ввести входные данные в поля Входной интервал Y(X6)и Входной интервал X(X4)и щелкнуть по полю Метки, чтобы заголовки не вошли в интервалы данных;
- ввести параметры вывода в поле Выходной интервал : адрес левого верхнего угла таблицы результатов или щелкнуть поле Новый рабочий лист для вывода на другой лист (см. рис.4);
- для наглядности можно вывести график, щелкнув по полю График подбора ;
- OK.
Рис.4.Работа с диалоговым окном Регрессия.
Результат работы инструмента Регрессия приведен на рис.5. Итак, выборочное уравнение линейной регрессии X6 на X4 имеет вид:
Выходная таблица содержит коэффициент детерминации R2 = 0,368802, что означает, что полученная модель приблизительно на 37% отражает зависимость удельного веса покупных изделий от трудоемкости единицы продукции. Стандартная ошибка (отклонение результата) = 0,118415 означает, что 68% реальных значений результирующего признака x6 находится в диапазоне 0,118415 от линии регрессии. Это следует из того, что условные распределения нормально распределенной генеральной совокупности при фиксировании различных подмножеств компонент являются нормальными.
ВЫВОД ИТОГОВ | |||||||
Регрессионная статистика | |||||||
Множественный R |
0,607291 | ||||||
R-квадрат |
0,368802 | ||||||
Нормированный R-квадрат |
0,35592 | ||||||
Стандартная ошибка |
0,118415 | ||||||
Наблюдения |
51 | ||||||
Дисперсионный анализ | |||||||
df |
SS |
MS |
F |
Значимость F | |||
Регрессия |
1 |
0,401452 |
0,401452 |
28,63014 |
2,3E-06 | ||
Остаток |
49 |
0,687078 |
0,014022 | ||||
Итого |
50 |
1,088529 | |||||
Коэффициенты |
Стандартная ошибка |
t-статистика |
P-Значение |
Нижние 95% |
Верхние 95% | ||
Y-пересечение |
0,557512 |
0,051111 |
10,90789 |
1,04E-14 |
0,45480 |
0,66022 | |
X4 |
-0,85062 |
0,158973 |
-5,35071 |
2,3E-06 |
-1,1701 |
-0,5312 | |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели