Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки
В настоящее время на пассажирских вагонах железных дорог России и других стран СНГ для соединения единиц подвижного состава используется автосцепка жесткого типа СА-3. Для выборки зазоров в автосцепном устройстве с целью снижения продольных ускорений пассажирские вагоны дополнительно оборудуются буферами.
Применение автосцепки СА-3 на пассажирских вагонах имеет ряд недостатков. В частности
, мягкий рессорный комплект тележек приводит к большим относительным вертикальным перемещениям автосцепок в процессе движения и соответственно к их интенсивному износу, появляется опасность саморасцепов, возникает высокий уровень шума из-за частых ударов хвостовика автосцепки о центрирующую балочку.
3.1 Характеристика дефектов корпуса автосцепки
Корпус автосцепки при работе испытывает значительные динамические нагрузки, действующие в различных плоскостях, большие перепепады температур. Значительные продольные и поперечные нагрузки появляются при входе состава в кривые участки пути или выходе из них, при переломах профиля железнодорожного полотна , на сортировочных станциях и горках , при трогании с места и торможениях. Перегрузки возникают от несинхронности колебаний сочлененных вагонов. Сложный профиль корпуса автосцепки также является естественным источником концентрации внутренних напряжений.
Основной причиной ремонта и замены этой детали при плановых текущих ремонтах является износ.
К основным неисправностям корпуса автосцепки относятся:
- износы тяговых поверхностей большого и малого зубьев и износы ударных поверхностей большого зуба и зева существенно ухудшают продольную динамику вагонов и могут являться причиной саморасцепов;
- износ поверхностей корпуса в месте соприкосновения с поверхностями проема ударной розетки происходит в случае отклонения оси корпуса в вертикальной и горизонтальной плоскостях.
При проходе вагонов в кривых малого радиуса и особенно при сцеплении вагонов с разной длинной консольной части рамы оси автосцепки отклоняются и на первом этапе подвергаются износу вертикальные стенки корпуса автосцепки. Прочность стенок становится недостаточной при определенном износе, хвостовик начинает изгибаться в горизонтальной плоскости. При прохождении переломов профиля пути возникает заклинивание автосцепок в контуре зацепления. В результате этого хвостовик автосцепки упирается через тяговый хомут в верхнее перекрытие хребтовой балки и начинает поднимать вагон. Это приводит к изгибу хвостовика в вертикальной плоскости или изломам маятниковых подвесок смежной автосцепки.
- износ упорной поверхности хвостовика от взаимодействия с упорной плитой, износы стенок отверстия от взаимодействия с клином хомута являются причиной износа перемычки хвостовика; износ в месте сопряжения хвостовика с тяговым хомутом. Основной причиной этих износов является существенное увеличение продольных сил;
- износ поверхности упора головы автосцепки в выступ ударной розетки происходит из-за недостаточной эффективности поглощающих аппаратов в определенных поездных ситуациях;
- трещины в месте перехода от головы к хвостовику характеризуется хрупким разрушением и в большинстве своем происходят в результате износа перемычки;
- трещины в углах окон под замок и замкодержатель и трещины в углах образованных ударной стенкой зева и боковой стенкой большого зуба, а так же между этой стеной и тяговой стороной большого зуба. Эти трещины образуются в результате влияния концентрации напряжений в зонах перехода от одной поверхности к другой.
3.2 Меры повышения надежности корпуса автосцепки в эксплуатации
Мерой повышения износостойкости ударных поверхностей большого зуба и зева служит упрочнение этих поверхностей индукционно-металургическим способом. Этот способ позволяет увеличить срок службы корпуса между ремонтами в 2 раза.
Мерой уменьшения износов при вертикальных перемещениях автосцепок, опасности саморасцепов и высокого уровня шума может стать применение новой автосцепки. Такая автосцепка разработана ВНИИЖТом совместно с Тверским вагоностроительным заводом.
1- направляющий рог; 2 – большой зуб; 3- замок подпружиненный; 4 – предохранитель.
Рисунок 4. Автосцепка жесткого типа.
Автосцепка жесткого типа не допускает в сцепленном состоянии взаимных вертикальных перемещений. Для этого автосцепка оснащена направляющим рогом, который в процессе сцепления взаимодействует с нижней наклонной поверхностью большого зуба смежной сцепки и таким образом устанавливает их сносно, независимо от разности высот автосцепок перед сцеплением.
Новый механизм сцепления, разработанный ВНИИЖТом, имеет преимущества перед типовым. Подпружиненный замок не перекатывается как в автосцепке СА-3, а перемещается поступательно , что вместе с предохранителем полностью исключает опасность самопроизвольного расцепления автосцепок.
Для опоры автосцепки жесткого типа должно использоваться центрирующее устройство с упругой опорой хвостовика, например подпружиненная центрирующая балочка. Это исключит опасность передачи вертикальной нагрузки через автосцепку на смежный вагон при переломах профиля пути.
Опытные образцы автосцепки были изготовлены Брянским машиностроительным заводом и прошли стендовые испытания на Экспериментальном кольце ВНИИЖТа, которые показали надежную сцепляемость новой сцепки, как с аналогичной, так и с типовой.
Такая сцепка позволит увеличить межремонтные сроки эксплуатации и значительно уменьшить шум при движении поезда. Она взаимозаменяема с автосцепкой СА-3 и может устанавливаться на пассажирские вагоны эксплуатационного парка при проведении плановых видов ремонта.
Эта автосцепка также обеспечивает повышение безопасности движения поездов благодаря использованию разработанного ВНИИЖТом нового расцепного привода.
Его расцепкой рычаг 1 дополнительно оборудован третьим блокирующим плечом 2, которое связано с нижней частью балансира валика подъемника 3 блокирующей цепью 4 в дополнение к имеющейся на всех вагонах расцепкой цепи 5. Такая модернизация расцепного привода не препятствует расцеплению автосцепок при переформировании поездов.
1 – расцепной рычаг; 2- блокирующее плечо; 3 – валик подъемника; 4 – блокирующая цепь; 5 – расцепная цепь; 6 – ограничитель вертикальных перемещений.
Рисунок 5. Новый расцепной приыод.
Вместе с тем, в случае обрыва автосцепки обе цепи натягиваются одновременно и при дальнейшем расхождении вагонов сначала обрывается расцепная цепь 5, выполненная меньшей прочности, а затем блокирующая 4. При этом расцепления автосцепок не происходит. Таким образом, при наличии нового расцепного привода оборвавшаяся автосцепка сохраняет сцепленное положение со смежной и не падает на путь. Такой расцепной привод может использоваться не только с автосцепкой жесткого типа, но и с типовой, оборудованной ограничителем вертикальных перемещений 6.
Предложенные конструкции автосцепного устройства представлены в статье старшего научного сотрудника ВНИИЖТа, кандидата технических наук Беляева В.И., заведующего лабораторией автосцепки ВНИИЖТа Ступина Д.А. , заместителя руководителя департамента пассажирских сообщений МПС РФ Кузнецова А.
Другие рефераты на тему «Транспорт»:
Поиск рефератов
Последние рефераты раздела
- Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки
- Проектирование автомобильных дорог
- Проектирование автотранспортного предприятия МАЗ
- Производственно-техническая база предприятий автомобильного транспорта
- Расчет подъемного механизма самосвала
- Системы автоблокировки
- Совершенствование организации движения и снижение аварийности общественного транспорта в городе Витебск