Значение математических развлечений при ознакомлении детей дошкольного возраста с формой предметов и геометрическими фигурами
На втором этапе детей учат определять не только основную форму предметов, но и форму деталей (домик, машина, снеговик, петрушка и т.д.). Игровые упражнения проводят с целью обучения детей зрительно расчленять предметы на части определенной формы и воссоздавать предмет из частей. Такие упражнения с разрезными картинками, кубиками, мозаикой лучше проводить вне занятия.
Следующая задача - науч
ить детей составлять плоские геометрические фигуры путем преобразования разных фигур. Например, из двух треугольников сложить квадрат, а из других треугольников – прямоугольник. Затем из двух-трех квадратов, сгибая их разными способами, получать новые фигуры (треугольники, прямоугольники, маленькие квадраты).
Очень важно упражнять детей в комбинировании геометрических фигур, в составлении разных композиций из одних и тех же фигур. Это приучает их всматриваться в форму различных частей любого предмета, читать технический рисунок при конструировании. Из геометрических фигур могут составляться изображения предметов.
Одна из задач старшей группы - познакомить детей с многоугольником, его признаками: вершины, стороны, углы. Решение этой задачи позволит подвести детей к обобщению: все фигуры, имеющие по три и более угла, вершины, стороны, относятся к группе многоугольников.
Детям показывают модель круга и новую фигуру – пятиугольник. Предлагают сравнить их и выяснить, чем отличаются эти фигуры. Фигура справа отличается от круга тем, что имеет углы, много углов. Детям предлагается прокатить круг и попытаться прокатить многоугольник. Он не катится по столу. Этому мешают углы. Считают углы, стороны, вершины и устанавливают, почему эта фигура называется многоугольником. Для уточнения знаний о многоугольнике могут быть даны задания по зарисовке фигур на бумаге в клетку. Затем можно показать разные способы преобразования фигур: обрезать или отогнуть углы у квадрата и получится восьмиугольник. Накладывая два квадрата друг на друга, можно получить восьмиконечную звезду.
Согласно программе в старшей группе следует продолжать учить детей преобразованию фигур.
Эта работа способствует:
-познанию фигур и их признаков
-развивает конструктивное и геометрическое мышление.
Приемы этой работы многообразны:
-одни из них направлены на знакомство с новыми фигурами при их делении на части,
-другие – на создание новых фигур при их объединении.
Детям предлагают сложить квадрат пополам двумя способами: совмещая противолежащие стороны или противолежащие углы – и сказать, какие фигуры получились после сгибаний (два прямоугольника или два треугольника).
Можно предложить узнать, какие получились фигуры, когда прямоугольник разделили на части, и сколько теперь всего фигур (один прямоугольник, а в нем три треугольника). Особый интерес для детей представляют занимательные упражнения на преобразование фигур.
Таким образом, для развития у ребенка представлений формы надо освоить ряд практических действий, которые помогают ему воспринимать форму независимо от положения фигуры в пространстве, от цвета и величины. Это такие практические действия, как: наложение фигур, прикладывание, переворачивание, сопоставление элементов фигур, обведение пальцем контура, ощупывание, рисование. После освоения практических действий ребенок может узнать любую фигуру, выполняя эти же действия в уме.
Использование задач-головоломок в развитии у детей дошкольного возраста представлений о форме предмета и геометрических фигурах
Любая математическая задача на смекалку, для какого бы возраста она ни предназначалась, несет в себе определенную умственную нагрузку, которая чаще всего замаскирована занимательным сюжетом, внешними данными, условием задачи и т. д.
Занимательность математическому материалу придают игровые элементы, содержащиеся в каждой задаче, логическом упражнении, развлечении, будь то шахматы или самая элементарная головоломка. Например, в вопросе: "Как с помощью двух палочек сложить на столе квадрат?" - необычность его постановки заставляет ребенка задуматься в поисках ответа, втянуться в игру воображения.
Из всего многообразия головоломок наиболее приемлемы в старшем дошкольном возрасте(5-7 лет) головоломки с палочками (можно использовать спички без серы). Их называют задачами на смекалку геометрического характера, так как в ходе решения, как правило, идет трансфигурация, преобразование одних фигур в другие, а не только изменение их количества. В дошкольном возрасте используются самые простые головоломки. Для организации работы с детьми необходимо иметь наборы обычных счетных палочек для составления из них наглядно представленных задач-головоломок. Кроме этого, потребуются таблицы с графически изображенными на них фигурами, которые подлежат преобразованию. На обратной стороне таблиц указывается, какое преобразование надо проделать и какая фигура должна получиться в результате.
Для детей 5-7 лет задачи-головоломки можно объединить в 3 группы (по способу перестроения фигур, степени сложности).
1. Задачи на составление заданной фигуры из определенного количества палочек: составить 2 равных квадрата из 7 палочек, 2 равных треугольника из 5 палочек.
2. Задачи на изменение фигур, для решения которых надо убрать указанное количество палочек.
3. Задачи на смекалку, решение которых состоит в перекладывании палочек с целью видоизменения, преобразования заданной фигуры.
В ходе обучения способам решения, задачи на смекалку даются в указанной последовательности, начиная с более простых, с тем чтобы усвоенные детьми умения и навыки готовили ребят к более сложным действиям. Организуя эту работу, воспитатель ставит цель - учить детей приемам самостоятельного поиска решения задач, не предлагая никаких готовых приемов, способов, образцов решения.
Самые простые задачи первой группы дети без труда смогут решать, если ежедневно упражнять их в составлении геометрических фигур (квадратов, прямоугольников, треугольников) из счетных палочек. В начальный период обучения детей 5 лет решению простых задач на смекалку они самостоятельно, в основном практически действуя с палочками, ищут путь решения. Для развития у детей умения планировать ход мысли следует предлагать им высказывать предварительные суждения или действовать и рассуждать одновременно, объясняя способ и путь решения.
Возможно несколько видов решения задач первой группы. Усвоив способ пристроения фигур при условии общности сторон, дети очень легко и быстро дают 2-3 варианта решения. Каждая фигура при этом отличается от прежней пространственным положением. Одновременно ребята осваивают способ построения заданных фигур путем деления полученной геометрической фигуры на несколько (четырехугольник или квадрат - на 2 треугольника, прямоугольник - на 3 квадрата).
Предлагая детям 5-7 лет более сложные задачи на перестроение фигур, следует начинать с тех, в которых для изменения фигуры надо убрать определенное количество палочек, и наиболее простых - на перекладывание палочек.
Процесс решения задач второй и третьей групп гораздо сложнее, нежели первой группы. Нужно запомнить и осмыслить характер преобразования и результат (какие фигуры должны получиться и сколько) и постоянно в ходе поисков решения соотносить его с предполагаемыми или уже осуществленными изменениями. Необходим зрительный и мыслительный анализ задачи, умение представить возможные изменения в фигуре.
Другие рефераты на тему «Педагогика»:
- Разработка системы игровых мероприятий по социализации младших дошкольников, имеющих нарушения в слуховом развитии с целью наиболее эффективной социализации
- Развитие речи младшего школьника посредством изучения изобразительно-выразительных средств языка
- Воспитание в игре
- Методические аспекты ознакомления детей старшего дошкольного возраста с поэзией С.А. Есенина
- Введение краеведческого материала в урок русской литературы
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения