Операция над множествами как основа обучения арифметическим действиям над целыми неотрицательными числами

Однако постепенно, на протяжении многих веков, в процессе совершенствования счета, человек начал осознавать то общее, что имеют «три человека» и «три палки», вообще любые множества, имеющие три предмета. В результате образовались абстрактные числа «один», «два», «три», «четыре», и т. д. А вот выдающийся русский ученый-путешественник Н.Н. Миклухо-Маклай (1846-1888 гг.) описывает, как производили

счет папуасы, жившие на островах Новой Гвинеи, так: «Излюбленный способ счета состоит в том, что папуас загибает один за другим пальцы руки, причем издает определенный звук, например «бе, бе, бе…». Досчитав до пяти, он говорит «ибон-бе» (рука). Затем он загибает пальцы другой руки, снова повторяет «бе,бе, .», пока не доходит до «ибон-али» (две руки), т.е. два множества по пять элементов.

Если нужно считать дальше, папуас пользуется пальцами рук и ног кого-нибудь другого». (20, 5-7). Так у Геродота-греческого историка пятого века до н.э. читаем: «Персидский царь Дарий, оставив на время похода (в южнорусские степи) греков для охраны моста, построенного им через Дунай сказал: возьмите этот ремень и начиная с того дня, как я пойду на скифов, развязывайте на нем каждый день по одному узлу; когда минует число дней, означенное узлами, и я не вернулся, плывите обратно на родину. Аналогичный прием описывает Т. Семушкин в упомянутой уже повести: «Чукче Омрытагену оставили связку пуговиц. Он их по одной снимает каждое утро. Кончится вся связка, тогда он поедет на «праздник говоренья» (конференцию). Здесь мы в том и в другом случае имеем тоже обращение к множествам объектов, породившим числовое понятие, какое повторяет учитель арифметики в начальных классах, приглашая учеников считать с помощью кубиков, палочек, пальцев.

Итак, в математике вначале было не число, а множество. Анализ понятия множества и выяснения его подлинного значения в математике есть заслуга главным образом немецкого математика Георга Кантора (1845-1918 гг.). Созданная им теория множеств, некоторые идеи которой имелись и у предшественников Кантора и в частности были сравнительно подробно разработаны у чешского философа Бальцано (1781-1848 гг.), лежит ныне не только в основе математического анализа, но и проникает в известной мере в учебники школьной арифметики и алгебры. Современной человек уже в ранние годы жизни легко приобретает способность считать, называя числа один, два, три, четыре и т.д. Этот числовой ряд мы называем натуральным, его элементы - натуральными числами. Уже в I н. э. греческий математик Никомах говорит о натуральном, т. е. естественном ряде чисел. Термин «натуральное число» впервые употребляет римский автор Боэций (475-524 гг. н.э.). Время от времени термин этот встречается затем в рукописях XI века и позже. В современном смысле понятии «натуральное число» и последовательное употребление термина находит применение у французского просветителя Даламбера (1717-1783 гг.) в изданной им сотрудничестве с другими передовыми писателями во всеобщее употребление. Во многих языках, в том числе славянском, существуют такие грамматические формы, как единственное число, двойственное число и множественное; слово, обозначающее предмет, имеет различные окончание, в зависимости от того идет ли речь об одном, о двух или более чем о двух предметах. В некоторых языках имеется еще особая форма тройственного числа. Эти языковые формы являются пережитками той отдаленной эпохи развития, в которую человеком были освоены лишь числа один и два или один, два и три; всякая более многочисленная группа предметов характеризовалась словами «много», «тьма». В замечательном памятнике древнерусской литературы «Поучение Владимира Мономаха» написанном лет восемьсот назад, формы слов в различных падежах совпадают с современными, когда речь идет об одном или о многих предметах (формы единственного или множественного чисел). Когда же говорится о двух предметах или парных, появляется непривычная нам форма. «Конь диких своима рукама связал есмь. А лось ругама бол…»

В этом отрывке, понятном по смыслу, подчеркнутые слова имеют форму двойственного числа (речь идет о двух, о трех рогах). Исчезновение двойственного числа в русских памятниках начинается с 13 в. Наиболее освоенное число натурального ряда, граничащее с не считаемым, часто приобретало особый ореол чудесного и, по видимому, служило основанием для возникновения суеверий, связанных с различными числами, сохранившимся в языке до сих пор. Суеверия связанные с такими числами как 3,7,13,40 распространены. Как мы знаем, у нас сейчас в употреблении десятичная система счисления. Единственной причиной, заставивший большинство народов избрать десятичную систему счисления, является наличие у человека на руках десяти пальцев, которые служили удобнейшей вещественной основой счета. Десять пальцев - это то стандартное множество, с которым сравнивал первобытный человек всякое другое множество до тех пор, пока у него не образовалось в сознание новое стандартное множество, в виде абстрактного ряда натуральных чисел. Историческую роль пальцев при образование числовых понятий мы вспоминаем каждый раз, когда советуем ученику считать по пальцам. Пальцевый счет - обозначение чисел при помощи пальцев – обладал не только большой наглядностью, но и был вызван практическими потребностями. Приемы его излагались еще в учебниках XVI в., например у Рикорда (1510 -1558 гг.). Пальцевый счет был необходим в торговых местах, где сталкивались представители разных народов, не имевших общего языка. Практическая необходимость выработала общий пальцевой счет, понятный без слов, и этому счету обучали детей в школе.

Числа 1, 2, 3, 4, . . . называются натуральными.

Понятие натурального числа является одним из основных понятий в математике. Возникло оно, как и вся наука математика, из потребности практической деятельности людей. Складывалось оно постепенно в процессе решения все усложняющихся задач с начала практического , а затем и теоретического характера. Причиной, которая привела человека к созданию натуральных чисел, является необходимость сравнивать различные конечные множества между собой. В своем развитии понятие натурального числа прошло несколько этапов. В глубокой древности, чтобы сравнивать конечные множества, устанавливали или между одним из множеств и подмножеством другого множества, т.е. на этапе человек воспринимал численность множества предметов без счета их. Например, о численности группа из пяти предметов он говорил: «Столько же, сколько пальцев на руке», о множестве из двадцати предметов: «Столько же, сколько пальцев у человека». Такой метод обладал недостатком, что сравниваемые множества должны быть одновременно обозримы. В результате очень долгого периода развития человек пришел к следующему этапу создания натуральных чисел – сравнения множеств стали применять множества-посредники уже представляли собой зачатки понятия натурального числа, хотя и на этом этапе число не отделялось от сосчитываемых множеств: речь шла о пяти камешках, пяти пальцах, а не о числе вообще. Названия множеств-посредников стали использовать для определения численности множеств, которые с ними сравнивались. Так, у некоторых племен численность множества, состоящего из пяти элементов, обозначалась словом «рука», а численность множества из 20 предметов – словами «весь человек».

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы