Операция над множествами как основа обучения арифметическим действиям над целыми неотрицательными числами

Заметим, что в каком бы порядке мы не считали предметы множества, опыт показывает, что результат счета будет один и тот же. Если же нас интересует установление порядка между предметами данного множества, то при счете этих предметов мы используем порядковые названия натуральных чисел (первый, второй, третий и т.д.). Тем самым предметы множества мы как бы располагаем в ряд. Одновременно с этим мы

устанавливаем и количество предметов в множестве. Если последний из перечисленных предметов оказался восьмым, в множестве имеется 8 элементов.

Дети должны уметь последовательно выделять признаки предметов («Что это? Для чего нужны? Какой формы? Какого размера? Какого цвета? Сколько?»). Сравнивать предметы и объединять их в группы в основе одного из выделенных признаков, в образование групп. Они выделяют признаки, общие для всей группы предметов или лишь для части предметов данной группы, т.е. выделяют подгруппы предметов по тому или иному признаку, устанавливать количественные соотношения между ними. Например: «Сколько машин? Сколько деревянных игрушек? Сколько металлических? Сколько больших игрушек? Сколько маленьких?»

В заключение можно предлагать придумать вопросы со словом сколько, основываясь на умение выделять, признаки объектов и объединять их по общему для данной подгруппы или группы в целом признаку.

Каждый раз перед ребенком ставит вопрос: почему он так думает? Это способствует лучшему осознанию количественных отношений. Упражняясь, дети сначала устанавливают, каких предметов больше, каких меньше, а затем пересчитывают предметы и сравнивают числа либо сначала определяют количество предметов, попавших в разные подгруппы, а затем устанавливают количественные отношения между ними: «Чего больше, если треугольников 6, а кругов 5?».

Сравнивая совокупности предметов дети должны знать способы практического сопоставления их элементов: наложение, приложение, раскладывание предметов 2 совокупностей парами, использование эквивалентов для сравнения 2 совокупностей, наконец, соединение предметов 2 совокупностей стрелочками. Например, учитель рисует на доске 6 кружков, а с права – 5 овалов и спрашивает: «Каких фигур больше (меньше) и почему? Как проверить? А если не считать?» Кому-либо из детей предлагает каждый кружок соединить стрелочкой овалов . Выясняет, что 1 кружок оказался лишним, значит, их больше, чем других фигур, 1 овалов не хватила, значит, их меньше, чем кружков. «Что надо сделать, чтобы фигур стало поровну?» и т. д. Детям предлагается самим нарисовать указанное число фигур 2 видов.

В курсе математики начальных классов находит отражение теоретико-множественный подход к истолкованию сложения и вычитания целых неотрицательных чисел (натуральных и нуля), в соответствии с которым сложение целых неотрицательных чисел связано с операцией объединения попарно непересекающихся конечных множеств, вычитание – с операцией дополнения выделенного подмножества. Этот подход легко интерпретируется на уровне предметных действий, позволяя тем самым учитывать психологические особенности младших школьников.

Простейшей операцией над множествами является операция соединения (объединения) нескольких множеств в одно новое множество. Если мы имеем два множества А и В, то в результате получается новое множество С, такое, что каждый элемент с является или элементом множества n (А), или элементом множества n (В). И обратно: каждый элемент множества n (В) входят в множество n (С).

А В

С

Рис. 2.

Если количество элементов множества n (А) равно а, а количество элементов множества n (В) равно в, то действие с помощью которого находят количество элементов в множестве n (С) - объединения множеств А и В, есть сложение чисел а и в, которое записывается так: а + в = с. При этом числа а и в называются слагаемыми, а число с – результат сложения чисел а и в называются их суммой.

Числовые равенства интерпретируются на числовом луче. Можно условно выделить три вида ситуаций, связанных с операцией объединения:

а) увеличение данного предметного множества на несколько предметов:

Рис. 3.

б) увеличение на несколько предметов множества, равночисленного данному:

Рис.4.

в) составление одного множества из двух данных:

Рис.5.

В процессе выполнения предметных действий у ребенка формируется представление о сложении как о действии, которые связано с увеличением количества предметов. Другой простейшей операцией над множествами является операция вычитания (отнимания) при операции вычитания из одного множества элементов отнимают элементы другого множества. Так на рисунке 1 из множества n (С) можно отнять множество n (А) и останется множество n (В). При формировании у детей представлений о вычитании можно условно ориентироваться на следующие предметные ситуации:

а) уменьшение данного предметного множества на несколько предметов (множество предметов, которые удаляются, зачеркнуто):

Рис.6.

б) уменьшение множества, равночисленного данному, на несколько предметов:

Рис.7.

в) сравнение двух предметных множеств, т. е. ответ на вопрос «На сколько предметов в одном множестве больше (меньше), чем в другом?»:

Рис.8.

В процессе выполнения предметных действий у ребенка формируется представление о вычитании как о действие, которое связано с уменьшением количества предметов.

Рассмотрим конкретный пример: «У Маши было пять кукол. Две она подарила Тане. Покажи куклы, которые у нее остались». Дети рисуют 5 кукол, зачеркивают 2 и показывают куклы, которые у нее остались.

Рис.9.

Для разъяснения смысла вычитания, также как и сложения, можно использовать представления детей о соотношение целого и части. В этом случае куклы, которые были у Маши («целое»), состоят из двух частей: «куклы, которые она подарила и куклы, которые у нее остались».

Часть всегда меньше целого, поэтому нахождение части связано с вычитанием. Обозначая части и целое их числовыми значениями, дети получают выражение 5 – 2 или равенство 5 – 2 = 3. В процессе выполнения у детей формируется представление о понятие «меньше на».

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы