Изучение элементов теории множеств в начальном курсе обучения математике
Приходя в школу, ребенок-первоклассник вливается в коллектив класса, который становится сферой его общения, самоутверждения и самореализации. Здесь он может выразить свою индивидуальность, приобрести помощь, поддержку и дружеское понимание, сопоставить личностную самооценку с тем, как его оценивают другие.
В соответствии с этапами развития коллектива (О.С. Анисимов) у ученика начальной школ
ы важно сформировать ценность внесения максимального личного вклада в коллективную деятельность в ходе совместного решения учебной задачи.
В начальной школе начинается формирование системы знаний детей об окружающем мире. В отличие от дошкольной подготовке, где дети приобретают опыт наблюдения явлений и фиксирования их в языке, в начальной школе под руководством учителя они строят язык науки для объяснений причин этих явлений.
В программе по математике для начальной школы «Учись учиться» дети выделяют на уровне эмпирического обобщения основные математические понятия, такие, как число, величина, порядок, операция, фигура и др., исследуют свойства этих понятий и определяют их связь между ними. Здесь же они приобретают первый опыт самостоятельной теоретической деятельности, применяя, например, свойства сложения для упрощения вычисления.
Отбор содержания и последовательность изучения основных математических понятий осуществлялись в программе «Учись учиться» на основе системного подхода. Построенная Н.Я. Виленкиным и его учениками многоуровневая система начальных математических понятий (СНМП, 1980) позволила установить порядок введение в школьном математическом образовании фундаментальных понятий, обеспечивающих преемственные связи между ними и непрерывное развитие всех содержательно-методических линий курса математики 0-9.
Итак, целевые требования программы по математике для начальной школы «Учись учиться» могут быть определены следующим образом.
Деятельностные цели:
Развитие познавательных процессов и мыслительных операций.
Формирование представлений о коммуникативном взаимодействии и приобретение опыта коммуникации в позициях «автора», «понимающего» и «критика».
Формирования представлений о целях и функциях учения и приобретение опыта самостоятельной учебной деятельности под руководством учителя.
Воспитательные цели:
Формирование системы ценностей направленной на максимальную личную эффективность в коллективной деятельности.
Содержательные цели:
Формирование на основе системного подхода математических представлений, адекватных второму допонятийному этапу познания [26, 10].
Принципы построения содержания курса математике начальной школы «Учусь учиться»
Отбор содержания курса математики начальной школы в программе «Учусь учиться» осуществлялся в соответствии с требованиями, которые накладывает на учебное содержание дидактическая система деятельностного метода. Так, технология и система дидактических принципов деятельностного метода требуют, чтобы учебное содержание соответствовало сущности исторического процесса формирование науки, строилось в виде содержательных линий без повторений, обеспечивало связь с системой наук и с жизнью, предоставляло учащимся возможность выбора заданий всех уровней, соответствовало психофизиологическим особенностям развития детей, создавало условия для развития их творческих способностей и др.
Использование дидактической системы деятельностного метода создает условия для самостоятельного построения детьми нового знания в процессе прохождения ими всех трех этапов математического моделирования. Ими являются:
Этап математизации действительности, то есть построение математической модели некоторого фрагмента действительности;
Этап изучения математической модели, то есть построения математической теории, описывающей свойства построенной модели;
Этап приложения полученных результатов к реальному миру.
В практике нередко первый и третий этапы опускают, считая, что задачей школьного курса математики является лишь усвоение математических теорий, а возникновении математических понятий и их практическом приложении речь, как правило, не идет. В результате учащиеся плохо осознают практическую значимость математической науки и ее место в системе наук. Их деятельность на уроках математики становится формальной, теряет личностный смысл.
Математическое моделирование объектов и процессов реальной жизни позволяет учащимся не только овладеть основными методами математической деятельности, но и создать интересную, содержательную и значимую с позиций общих представлений об окружающем мире систему математических понятий.
Анализ системы начальных математических понятий, проведенный Н.Я. Виленкиным (1980), показал, что существенную роль при формировании учебных программ по математике играет выбор порядка введения фундаментальных понятий. При этом один из основных вопросов, который должен быть решен при построения школьного курса математики, является вопрос о роли и соотношении в нем понятий множества и величины. Оба этих понятия составляют генетическую основу для формирования понятия числа. Природа числа двойственна: за натуральными числами стоят конечные множества, а за положительными действительными числами – скалярные величины. Несмотря на двойственную природу, натуральные и действительные числа теснейшим образом взаимосвязаны: в их основе лежит одна и та же математическая структура.
Указанный параллелизм дает руководство, как следует поставить изучение системы математических понятий в школе: в начальном курсе математики понятия множества и величины должны развиваться параллельно, причем наглядно очевидные свойства операций над множествами и величинами должны находить отражение друг в друге. А числа (с одной стороны, натуральные, а с другой - положительные действительные) увенчивают возводимое здание, давая язык, необходимый для обсуждения и, главным образом, применения изученных свойств.
Именно такой подход обеспечит успешное приложение полученных математических знаний к решению практических задач. Иначе говоря, лишь синтез теоретико-множественного подхода к начальному курсу математики с изучением скалярных величин и их свойств может привести к правильному формированию математических понятий у школьников.
Обучение математике в условиях программы «Школа 2000…»
Цели обучения математике в программе «Учись учиться» решаются в процессе построения учащимися начальной школы системы основных математических понятий, обеспечивающих преемственные связи с дошкольной подготовкой и курсом математики средней школы по всем содержательно-методическим линиям.
Основой организации учебного процесса в программе «Учись учиться» является дидактическая система деятельностного метода обучения «Школа 2000…», которая может использоваться на двух уровнях: базовом и технологическом.
Базовый уровень технологии деятельностного метода предполагает следующую структуру уроков введения нового знания:
мотивация к учебной деятельности;
актуализация знаний;
проблемное объяснение нового знания;
Другие рефераты на тему «Педагогика»:
- Экспериментальное исследование чувства гражданственности у детей дошкольного возраста
- Формирование духовной культуры школьников средствами музыкального искусства
- Математические предложения и методика их изучения
- Повышение эффективности урока иностранного языка с помощью игровых методов
- Основы научных исследований
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения