Обучение решению задач на проценты в курсе алгебры основной школы

Сложив оба эти равенства, получим

1+

Ответ: 50%.

Геометрическое решение. Разместим всех жителей города на отрезке так, что знающие английский язык стоят на отрезке слева, а знающие французский – справа. Если этот отрезок – 100%, то общая часть этих множеств есть отрезок [30%,80%] «протяженностью» в 50% (см. рис 1.).

Рис 1.

Вопрос П2. На сколько процентов А больше чем В?

Формула ответа: %.

Обсуждение. Как и при обсуждении вопроса П1 нужно определить стопроцентную базу (в данном случае – это В).

Вопрос П3. На сколько процентов А меньше, чем В?

Формула ответа: %.

Обсуждение. Конструкция ответа аналогична предыдущему случаю.

Следует отметить, что решение данной группы задач можно проводить как алгебраическим, так и геометрическим способом.

Таким образом, можно сказать, что задачи на проценты очень разнообразны, а понятие процента используется в различных областях науки и практики.

Изучение темы «Проценты» в современной школе.

Понятие процента имеет широкое практическое применение, поэтому оно является обязательной частью школьной программы по математике. Школьники должны научится решать основные задачи на проценты, представлять их в виде десятичных и обыкновенных дробей.

Традиционно тема «Проценты» изучается в рамках младших классов среднего звена. Можно выделить несколько подходов к изучению данной темы.

Первый подход. Рассмотрение процентов ведется как отдельная тема, без опоры на дроби. Нахождение нескольких процентов от числа осуществляется в два действия. Изучение дробей ведется отдельной темой, гораздо позже задач на проценты. Таким образом, обучение идет от частного к общему, что менее эффективно и дает меньше возможностей для развития обучаемого.

Второй подход. Задачи на проценты осваиваются как частный случай задач на дроби и все приемы решения переносятся на них, то есть изучение идет от общего случая – задач на дроби, к частному. В большинстве современных учебников реализован второй подход.

Рассмотрим более подробно изучение данной темы в некоторых современных учебниках, рекомендованных Министерством Образования России на 2003/2004 учебный год для преподавания математики в основной школе.

По учебникам тема «Проценты» изучается в V классе. Перед введением понятия «процент» автор предлагает рассмотреть примеры:

«Сотую часть центнера называют килограммом, сотую часть метра – сантиметром, сотую часть гектара – акром. Принято называть сотую часть любой величины процентом».

Рассматриваются три основные задачи на проценты:

Задача вида К1.

Пример 1: Бригада рабочих за день отремонтировала 40% дороги, имеющей длину 120 м. Сколько метров дороги было отремонтировано бригадой за день?

Решение:

120 м составляет 100%

1) 120:100 =1,2 м составляет 1%.

2) м отремонтировано бригадой за день.

Ответ: За день бригада отремонтировала 48 м дороги.

Задача вида К2.

Пример 2: Ученик прочитал 72 страницы, что составляет 30% числа всех страниц книги. Сколько страниц в книге?

Решение:

Неизвестное число – 100%.

1) 72:30=2,4 страницы составляет 1%.

2) страниц составляет 100%.

Ответ: В книге 240 страниц.

Задача вида П1.

Пример 3: В классе из 40 учащихся 32 правильно решили задачу. Сколько процентов учащихся правильно решили задачу?

Решение:

40 учащихся составляют 100%.

1) 40:100=0,4 составляет 1%.

2) 32:0,4=80; 32 ученика составляют 80%.

Ответ: 80% учащихся правильно решили задачу.

Однако эти виды задач не выделяются, так как в качестве основного способа решения задач на проценты принят способ приведения к единице. Он обладает определенными преимуществами:

а) проще для выполнения вычислений;

б) приучает учащихся к выделению числа, принимаемого за 100%;

в) требует проведения в процессе решения конкретной задачи соответствующих рассуждений, которые не включают запоминания правил решения того или иного вида задач на проценты.

Учебник предполагает решать некоторые задачи на проценты с помощью уравнений. Эта рекомендация относится по существу к двум видам задач: нахождение числа по данному числу его процентов и нахождение процентного отношения двух чисел. Опыт преподавания математики в V классе показывает, что учащиеся сталкиваются с определенными трудностями в процессе решения задач на проценты, что связано в основном с недостаточной осознанностью учащимися способа приведения к единице. Поэтому отработка сущности этого способа в два действия имеет решающее значение в обучении решению задач на проценты, особенно на начальном этапе усвоения знаний. Задачи, рассмотренные в примерах 2 и 3, могут быть решены с помощью уравнений. В V классе решение задач с помощью уравнений вызывают у учащихся значительные трудности.

Эта тема является одной из последних в курсе V класса. Далее авторы специально к теме не возвращается. Это не очень удачно, так как тема объективно трудная.

Несколько другой подход к этой теме в учебниках. Изучение процентов начинается в конце V класса. Авторы определяют процент, как иное название одной сотой. «Мы знаем, что одна вторая иначе называется половиной, одна четвертая – четвертью, три четвертых – тремя четвертями. Особое название имеет и одна сотая: одна сотая называется процентом». Учащиеся рассматривают только два вида задач:

Задача вида К1.

Пример 4. В школе 800 учащихся, 15% из них за четверть получили пятерки по математике. Сколько учеников получили пятерки по математике?

Решение:

Найдем вначале один процент, или одну сотую, от числа учащихся.

800: 100=8.

Чтобы найти 15%, нужно выполнить умножение:

=120.

Ответ: 120 учеников получили пятерки.

Большое внимание уделяется связи дробей (десятичных и обыкновенных) и процентов.

Задача вида П1.

Пример 5. Сколько процентов от 1 м составляет 1см, 9 см, 0,15 м?

В VI классе авторы снова возвращаются к этой теме. Учащиеся повторяют материал, изученный в V классе, и рассматриваются новые задачи. При этом для каждого вида задач проводится аналогия с действиями над десятичными и обыкновенными дробями, формулируется правило:

Для задачи вида К1.

«1) выразить проценты обыкновенной или десятичной дробью;

2) умножить данное число на эту дробь»

А также для задачи вида К2.

«1) выразить проценты обыкновенной или десятичной дробью;

2) разделить данное число на эту дробь»

Пример 6. За контрольную работу по математике отметку «4» получили 9 учеников. Это составляет 36% от всех учащихся класса. Сколько учащихся в классе?

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы