Обучение решению задач на проценты в курсе алгебры основной школы

№ 596. Выразить десятичной дробью:

а) 2,5%, 18,3%, 1,6%, 54,5%;

б) 0,1%, 0,5%, 0,3%, 0,7%;

в) 120%, 137%, 240%, 350%.

Предлагается рассмотреть разные способы решения той или иной задачи.

Пример 2. Мужская рубашка стоила 8200 р. Сколько она стала стоить, когда ее цена увеличилась на 35%?

Так как 35% – это 0,35, то надо найти 0,35 от 8200 р.:

rc="images/referats/29147/image039.png">(р.) (на столько повысилась цена).

Теперь найдем новую цену:

8200+2870=11070 (р.).

Можно рассуждать иначе. Старая цена составляет 100%, а новая – на 35% больше, т.е. она составляет 135%. Так как 135% – это 135:100=1,35, то цена увеличилась в 1,35 раза.

Имеем: (р.).

Также учащиеся знакомятся с задачами типа К2. Но авторы рассматривают эти задачи в рамках упражнений группы Б (более сложных).

№ 606. [15] В первый час работы продавец продал 40 кг яблок. Это составило 16% от первоначального количества яблок. Сколько килограммов яблок было у продавца первоначально?

В пункте «Выражение долей в процентах» центральной является задача об определении того, сколько процентов одна величина составляет от другой.

619. В избирательном округе 2500 избирателей. В голосовании приняли участие 1300 избирателей. Какой процент избирателей участвовал в голосовании?

Здесь принят подход, в соответствии с которым сначала находят, какую часть одна величина составляет от другой, выражают ее при необходимости десятичной дробью, а затем – в процентах.

Не следует торопиться приступать к решению новых задач. В учебнике предлагается система упражнений, в которых предлагается выразить дробь (обыкновенную или десятичную) в процентах.

№ 615. Прочитайте предложение, выразив дробь в процентах:

а) бензином заполнили бака;

б) учащихся школы едут в школу на автобусе;

в) масса сушеной вишни составляет массы свежей вишни;

г) магазин продал привезенного сахара.

Одна из особенностей вычислительной линии курса состоит в формировании умений выполнять прикидку или оценку результата вычислений. При изучении процентов эта работа, естественно, продолжается. Учащимся предлагаются задачи из повседневной практики, в которых требуется найти приближенно с помощью прикидки процент от заданной величины. Для этого достаточно заменить данные другими числами, близкими к ним и удобными для расчетов. Так, если требуется прикинуть, чему равно 19% от какой-либо величины, то находят 20% этой величины, т.е. ее пятую часть.

№ 595. Перед Новым годом магазин снизил цены на товары на 25%. На сколько примерно рублей понизилась цена товара, если до снижения она составляла 799 руб.? 1980 руб.? 11890 руб.?

№ 629. Часть фигуры заштрихована (см. рис 4.). Определите, какой примерно процент фигуры заштрихован, выбрав наиболее подходящий ответ из данных.

Рис. 4

Третий этап в изучении процентов отнесен к 7классу. В силу возрастных возможностей семиклассников и уже накопленного ими опыта работы с процентами учащимся становятся доступными многие вопросы из тех, что традиционно не рассматривались со всем классом, а изучались лишь в качестве дополнительных в работе с сильными учениками. Учащиеся уже знакомы со всеми основными видами задач, теперь они осваивают другие способы их решения, которые были им неизвестны.

В первой главе учебника выделен пункт «Решение задач на проценты», в котором помещен материал, позволяющий вспомнить сведения из шестого класса и продвинуться в решении задач. Теперь есть возможность рассмотреть более сложные в техническом отношении задачи. Они требуют достаточно прочного навыка представления процентов дробью и наоборот, умение находить процент от величины, понимание того, какая из величин, участвующих в задаче, принимается за 100%. Поэтому в начале теоретической части пункта рассматриваются приемы, с помощью которых десятичная дробь выражается в процентах и наоборот; здесь специально выделяется вопрос о «маленьких» (меньше 1%) и «больших» (больше 100%) процентах, как наиболее трудный для усвоения.

№ 99. В состав одного из поливитаминов входят минералы в следующих количествах: кальций и фосфор – по 4%, магний – 1,6%, железо – 0,07%, цинк – 0,06%. Сколько миллиграммов каждого минерала содержится в одной таблетке поливитамина, масса которой 25 г?

№ 88. В конце 1996 г. рабочим была выплачена премия в 250% ежемесячной зарплаты. Какую премию получил рабочий, зарплата которого была 550 тыс. р.?

Предлагаемые в системе упражнений задачи, как правило, допускают разные способы рассуждений, и учащиеся самостоятельно выбирают более удобный и понятный для себя.

Кроме задач на нахождение процента от величины, рассматриваются задачи на нахождение величины по известному ее проценту.

№ 107. После повышения цены на 30% книга стала стоить 52 рубля. Сколько стоила книга до повышения цены?

Решение. Первоначальная цена книги составляет 100%. Поэтому 52 руб., т.е. цена после подорожания, составляет 100%+30%=130% от первоначальной цены. Теперь можно решить задачу на нахождение величины по известному ее проценту.

Рассуждать можно по-разному:

1% – это 52: 130=0,4(руб.), а 100% – это 0,4* 100=40(руб.);

10% – 52:13=4(руб.), 100% – это 4*10=40(руб.);

130% – это 1,3, поэтому 52 руб. составляют 1,3 первоначальной цены, а поэтому первоначальная цена равна 52:1,3=40(руб.).

Следует отметить еще один методический подход, использованный в изучении процентов. Первую главу заключает раздел «Для тех, кому интересно», в котором учащиеся еще раз встречаются с задачами на проценты. Здесь рассматривается восемь, если можно так выразиться, «классических олимпиадных» задач. Обычно они не включаются в учебники, т.к. являются трудными. Приведено более простое решение такого класса задач. Следует уделить им внимание хотя бы на кружке.

Задача. Книга дороже альбома на 25%. На сколько процентов альбом дешевле книги? Вся методика обучения решению задач, принятая в учебнике, позволяет показать учащимся наглядный способ их решений с помощью рисунков (см. рис. 5). Хотя, конечно, эти задачи можно решать и арифметически.

Решение:

Цена альбома – 100%. Изобразим ее каким–либо отрезком

Увеличим этот отрезок на 25% т.е. на его части; получим отрезок, соответствующий цене книги.

Теперь цена книги составляет 100%. Она изображена большим отрезком. Цена альбома меньше цены книги на этого отрезка. Так как составляет 20%, то альбом дешевле книги на 20%.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы