Управление запасами
, (3.16)
откуда
. (3.17)
Соответственно
. (3.18)
Перепишем (3.17) в виде
,
где коэффициент перед скобкой равен приближенному значению , определяемому согласно (2.14), а – отношение среднего спроса за время задержки к . При малом , что следует считать типичным для практики, можно записать
. (3.19)
Найдем разность затрат в единицу времени с помощью формулы (3.12), используя (3.16):
Таким образом,
.
Используя приближенные и допустимые при малых разложения функции в ряд
и
,
получаем
Так как
, то и
(3.20)
т.е. увеличение затрат за счет приближенного определения q примерно пропорционально времени задержки поставки.
o Пример 4. Оценка величины погрешности функции затрат при фиксированной задержке поставки
Положим p = 100, h = 6, g = 20, µ = 5 и τ = 0,3. При этом приближенные значения параметров стратегии будут равны ; соответственно уточненные значения (при q, определяемом из (3.17)), суть и . Математическое ожидание затрат для стратегии составляет 67,7 а для – 66,3 единицы, т.е. разница , единицы, или 1,9 % .
Проверим качество приближенной оценки величины , рассчитанной по формуле (3.19). в нашем случае , откуда . Таким образом, порядок погрешности формула (3.19) указывает верно.
При других способах расчета штрафа форма записи системы (3.13) – (3.14) меняется очевидным образом. Так, при расчете штрафа, связанного с недостачей, носящей стохастический характер, оптимальный набор определяется по формулам
(3.21)
а при учете величины и времени существования дефицита – с помощью соотношений
Эти системы тоже решаются методом итераций.
Приближенные методы планирования поставок при их случайной издержке
Небольшой разброс фактических моментов прибытия поставок относительно предусмотренных позволяет планировать организацию снабжения методами, рассмотренными выше. В связи с неопределенностью момента прибытия поставки применение периодических стратегий и в данном случае оказывается невыгодным, и оптимизация проводится в классе стратегий с нижним критическим уровнем – обычно .
В качестве примера рассмотрим пуассоновский спрос интенсивности и экспоненциально распределенное время задержки поставок со средним, равным 1/λ.
Найдем распределение спроса за время задержки. Вероятность того, что спрос будет равен х, очевидно, составит
.
Последний интеграл может быть представлен в виде
и выражен через гамма-функцию (для целых х). таким образом,
, (3.23)
т.е. спрос за время издержки имеет отрицательное биноминальное распределение. Математическое ожидание недостач при страховом запасе составит
.
Первая из этих сумм
представляет собой арифметико-геометрическую прогрессию. Сумма членов прогрессии вида записывается в виде
.
В интересующем нас случае d = 0 и r = 1, так что
.
С помощью этой формулы легко получить более общее соотношение:
.
Его предельным случаем при и является
.
Таким образом,
.
Вторая сумма – обычная геометрическая прогрессия:
.
Следовательно, математическое ожидание недостач
.
Для облегчения процесса минимизации затрат предположим, что q и – любые действительные числа. Тогда мы сможем найти оптимальные q и из системы уравнений (3.13 – 3.14), в нашем случае принимающей вид
Другие рефераты на тему «Экономико-математическое моделирование»:
- Решение задач прогнозирования с помощью статистического пакета SPSS
- Эконометрия
- Понятие и классификация систем массового обслуживания
- Классическое вариационное исчисление. Уравнение Эйлера. Задача вариационного исчисления с подвижными границами
- Применение теории массового обслуживания в исследовании рынка
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели