Управление запасами
. (4.15)
Если внешних ограничений на уровни хранения и объемы производства не существует, то по аналогии с (4.11) получаем внутренние ограничения модели
,
. (4.16)
Если складские емкости
и производственные мощности предприятия ограничены количеством изделий Mk и Nk соответственно, то аналогично соотношениям (4.12) имеем
,
. (4.17)
На самом деле ограничения (4.16) и (4.17) имеют более сложную структуру. Однако для решения практических задач этого вполне достаточно. Напомним лишь о том, что переменные xk и yk целочисленны и не отрицательны.
Рассмотрим теперь функцию затрат . Введем следующие обозначения:
gt – затраты на производство и доставку заказа на t-м этапе;
ct(xt) – затраты на производство xt единиц продукции на t-м этапе;
ht(yt) – затраты на хранение yt единиц продукции в течение t-го планового этапа.
Для определенности будем считать, что производственные затраты линейны, т.е. ct(xt) = ctxt, и что затраты на хранение пропорциональны объему хранимой продукции в течении месяца. Далее, уровень (объем) хранения в течение этого месяца определяется уровнем хранения на конец этапа. Иными словами, поскольку время изготовления партий изделий пренебрежимо мало, а производить и отправлять заказчикам продукцию предприятию выгодно вначале каждого месяца, то уровень хранимого имущества в течение t-го этапа определяется соотношением баланса . В итоге получаем .
Функция затрат с учетом выведенных обозначений примет вид
(4.18)
Применим теперь метод динамического программирования к решению задачи управления запасами.
o Пример 6. Определение оптимальной программы производства
Рассмотрим плановый период работы предприятия, состоящий из трех месяцев: января, февраля, марта. Исходные данные сведены в таблице 1.
Таблица 1
Этап |
k |
1 |
2 |
3 |
Месяц |
Январь |
Февраль |
Март | |
Спрос |
dk |
2 |
5 |
2 |
Затраты на оформление заказа |
gk |
10 |
5 |
10 |
Затраты на производство одного изделия |
ck |
3 |
5 |
3 |
Стоимость хранения одного изделия в течение месяца |
hk |
2 |
2 |
1 |
Функция затрат определена формулой (4.18). Кроме того, будем считать, что предприятие не может производить более четырех изделий, а хранить – более трех, т.е. Mk = 3, Nk = 4, а уровень запасов y0 = y3 = 0.
Необходимо составить оптимальную программу выпуска продукции , которая минимизирует суммарные издержки предприятия.
Рассмотрим январский этап (k=1). Поскольку плановый период состоит из одного месяца, у нас практически нет возможности влиять на объем производства изделий. Поэтому все допустимые программы выпуска продукции будут оптимальны, поскольку они единственны.
Функция состояния в соответствии с (4.10) примет вид
.
Прежде чем произвести расчеты по формуле (4.18), укажем ограничения на изменения переменных x1 и y1. Поскольку уровни запасов на начало и конец планового периода равны нулю, то в январе мы можем произвести такое количество изделий, чтобы удовлетворять не только январский, но и февральский и мартовский спрос, т.е. произвести изделий, однако N1 = 4, поэтому . Возникает естественный вопрос: каков должен быть уровень запасов на конец января (или, что одно и то же, на начало февраля), чтобы, не изготавливая ничего ни в феврале, ни в марте, опять выйти на нулевой уровень запасов в конце марта? Ответ очевиден: объем запасов продукции должен быть равен . Но поскольку возможности склада ограничены , в итоге получаем:
.
Результаты вычислений сведем в табл. 2. .
Таблица 2
|
|
|
0 1 2 3 |
2 3 4 – |
10 + 3 · 2 + 1 · 0 = 16 10 + 3 · 3 + 1 · 1 = 20 10 + 3 · 4 + 1 · 2 = 24 – |
Рассмотрим k = 2, когда плановый период содержит январь и февраль. У нас появляются дополнительные возможности для изменения объема выпуска изделий на каждом из этапов, с тем чтобы выйти на ненулевой уровень запасов y3 = 0.
Рекуррентное соотношение (4.15) примем вид
,
где ξ – оптимальное значение уровня запасов y2 на конец второго этапа, которому соответствует наименьшие суммарные затраты на производство и хранение продукции.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели