Управление запасами

Ограничения на объем производства и уровень хранения очевидны:

,

.

Отобразим в таблице 3 все необходимые вычисления для февральского этапа .

Таблица 3

cellpadding="0" align="center">

x2

y2

0

1

2

3

4

0

5

4

3

2

20 + 0 + 24 = 44

1

25 + 0 + 20 = 45

3

44

1

6

5

4

3

2

25 + 2 +24 =51

4

51

2

7

6

5

4

3

Поясним содержание этой таблицы. Объем производства и уровень хранения определяются значениями x2 и y2 соответственно. В верхнем правом углу каждой клетки указаны уровни запасов на начало второго этапа, которые с помощью балансового уравнения вычисляются по формуле . Сумма внутри каждой клетки содержит три слагаемых. Рассмотрим эти слагаемые для клетки с координатами . Первое слагаемое – затраты на оформление заказа и производство продукции ; второе – затраты на хранение . Сумма двух первых слагаемых равна . Прежде чем вычислить третье слагаемое, которое в рекуррентном соотношении обозначено как , вспомним, что величина вычислена, находится в верхнем правом углу клетки и равна 0 – 3 + 5 = 2. Поэтому третье слагаемое возьмем из январской таблицы. Аналогично рассчитываются слагаемые в остальных клетках, а в «запрещенных» клетках, для которых не нашлось последнего слагаемого в январской (k = 1) таблице, сделан прочерк. Наименьшие суммарные затраты для каждого y2 запишем в последнем столбце (они подсчитаны в выделенных рамкой клетках), а значения оптимальных объемов производства изделий в феврале занесем в предпоследний столбец таблицы.

При k = 3 плановый период уже включает в себя январь, февраль и март. Запишем рекуррентное соотношение

,

где ξ – значения уровня запасов y3 на конец марта, которому соответствуют наименьшие суммарные затраты на хранение и производство продукции.

Новая таблица (табл. 4) содержит лишь одну строку, так как, по условию задачи, . Количество столбцов определим в соответствии с неравенством

.

Таблица 4

x3

y3

0

1

2

0

2

1

13 + 0 +51 = 64

0

16 + 0 + 44 =60

2

60

В остальном содержание таблицы ничем не отличается от предыдущей.

Составим оптимальную программу выпуска продукции на каждом этапе, которая обеспечит минимальные суммарные затраты в течение всего планового периода. Как видно из мартовской таблицы , что соответствует оптимальному уровню запасов , который рассчитан и записан в верхнем правом углу выделенной рамкой клетки. Далее из февральской таблицы следует, что .

В выделенной рамкой клетке с координатами (табл. 3) в верхнем правом углу записан оптимальный уровень запасов на конец января. Наконец, из январской таблицы получаем, что соответствует . Таким образом, построена оптимальная программа выпуска продукции

,

которая обеспечивает минимальные суммарные издержки на производство и хранение продукции.

Задачи

1. На нефтебазу бензин привозят на танкере. Накладные расходы g в расчете на партию бензина составляют 50000 руб. Ежегодно база отпускает µ = 4000 т бензина. Затраты на хранение h примем равным 0,5 руб. за 1 т бензина в сутки. Поставка осуществляется по первому требованию – мгновенно, и дефицит бензина на базе не допускается. Найдите оптимальные: объем заказываемой партии q, длительность цикла Т* работы системы и общее среднесуточные издержки .

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы