Математические задачи исследования операций, которые основаны на нелинейном программировании

Как и следовало ожидать, с уменьшением m значение mB стремится к нулю.

Завершая рассмотрение методов штрафных и барьерных функций, отметим, что можно построить алгоритм, использующий как штрафы, так и барьеры. Для этого достаточно записать смешанную вспомогательную функцию в виде

Q(x) = f(x) + mB(x) +width=65 height=51 src="images/referats/5480/image073.png">

где барьерная функция B(x) применяется к неравенствам, а штрафная функция Н(х) – к ограничениям-равенствам. Последовательность задач минимизации Q решается с уменьшающимися значениями параметра m.

6. Другие методы условной оптимизации

Если все ограничения задачи заданы в виде неравенств, то для поиска условного минимума могут применяться модификации некоторых методов безусловной оптимизации. Так в методах случайного поиска модификация заключается в изменении условия успешности шага или направления. Шаг считается успешным, если он приводит в точку, в которой улучшается значение целевой функции и выполняются все ограничения. С этой целью добавляется проверка каждой точки на принадлежность допустимому множеству. В остальном алгоритмы остаются без изменений.

Аналогичное дополнение алгоритма Хука-Дживса делает его пригодным для поиска условного минимума. Генетические алгоритмы также могут использоваться для условной оптимизации. Для этого в них вводится детерминированный оператор жизнеспособности: если особь не удовлетворяет условиям «жизни», она погибает. Такой оператор должен применяться к каждой особи.

В данной главе не затронуты вопросы, возникающие при минимизации многоэкстремальных функций. Задача поиска глобального минимума многократно сложнее локальной оптимизации. Напомним, что при минимизации унимодальных функций в одних методах направление спуска выбирается по локальной модели целевой функции, например, линейной (градиентные методы) или квадратичной (метод Ньютона), в других – без использования модели, например, симплексный и случайные методы. В случае многоэкстремальной функции методы поиска строятся также на основе либо модели глобального поведения функции, либо эвристических представлений.

Несмотря на интенсивные исследования проблемы глобальной оптимизации сегодня нет эффективных методов, построенных на идее глобального поведения функции. Практическое применение находят в основном подходы, использующие локальный спуск из многих начальных точек с последующим выбором лучшего из найденных решений. Многократный спуск иногда называют мультистартом. Ему присущи такие недостатки как возможность неоднократного спуска в одну и ту же точку и отсутствие гарантии попадания в область притяжения глобального минимума. Эффективность мультистарта повышают за счет обеспечения выхода из «мелких» минимумов, исключения повторных спусков в найденные минимумы и т.п. С этой целью процессу спуска придают инерцию, которая позволяет проскакивать «неглубокие» минимумы (метод тяжелого шарика), изменяют целевую функцию для придания ей «туннельного эффекта», обеспечивающего переход из найденного в более глубокий минимум, используют редукцию задачи и другие идеи.

7. Примеры методов нелинейного программирования при формировании оптимального портфеля ценных бумаг по модели Марковица

Мировые фондовые рынки обладают существенным уровнем неопределенности, что влечет неустранимый риск, сопровождающий принятие инвестиционных решений. В ряде частных случаев традиционные методы анализа этого риска оказываются несостоятельными, так как они ориентируются на традиционный тип неопределенности, связанный с поведением однотипных объектов с неизменными свойствами. Связанные с такой неопределенностью риски сравнительно легко оцениваются на базе широко известных методов теории вероятностей.

На финансовом рынке обращается, как правило, несколько типов ценных бумаг: государственные ценные бумаги, муниципальные облигации, корпоративные акции и т.п. Если у участника рынка есть свободные деньги, то их можно отнести в банк и получать проценты или купить на них ценные бумаги и получать дополнительный доход. Но в какой банк отнести? Какие ценные бумаги купить? Ценные бумаги с низкими рисками, как правило, и малоэффективны, высокоэффективные, как правило, более рискованны.

Рассмотрим общую задачу распределения, в которой участник рынка хочет потратить свой капитал на приобретение ценных бумаг. Цель инвестора – вложить деньги так, чтобы сохранить свой капитал, а при возможности и нарастить его.

Набор ценных бумаг, находящихся у участника рынка, называется его портфелем. Стоимость портфеля – это суммарная стоимость всех составляющих его бумаг. Если сегодня его стоимость есть Р, а через год она окажется равной Р/, то ( Р/– Р)/Р естественно назвать доходностью портфеля в процентах годовых. Т.е. доходность портфеля – это доходность на единицу его стоимости.

Пусть xi – доля капитала, потраченная на покупку ценных бумаг i-го вида. Весь выделенный капитал принимается за единицу. Пусть di – доходность в долях годовых бумаг i-го вида в расчете на одну денежную единицу.

Найдем доходность всего портфеля dp. С одной стороны, через год капитал портфеля будет равен 1+dp, с другой – стоимость бумаг i-го вида увеличится с хi до хi+dixi, так что суммарная стоимость портфеля будет . Приравнивая оба выражения для стоимости портфеля, получаем: . Отсюда:

. (1.28)

Итак, задача увеличения капитала портфеля эквивалентна аналогичной задаче о доходности портфеля, выраженной через доходности бумаг и их доли формулой (1.28).

Как правило, доходность колеблется во времени, так что будем считать её случайной величиной. Пусть – средняя ожидаемая доходность, и пусть – среднее квадратичное отклонение этой случайной доходности, т.е. – математическое ожидание доходности и – дисперсия i-ой доходности. Обозначим и будем называть , , соответственно, эффективностью и риском i-ой ценной бумаги. Через обозначим ковариацию доходностей ценных бумаг i-го и j-го видов (или корреляционный момент ).

Так как доходность составляющих портфель ценных бумаг случайна, то и доходность портфеля есть также случайная величина.

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы