Нильпотентная длина конечных групп с известными добавлениями к максимальным подгруппам
так что . Согласно лемме 2.11, группа изоморфна некоторой подгруппе группы , так что , откуда . Таким образом,
что и требовалось.
С другой стороны согласно следствию 1 леммы 2.7, содержит центр силовской -подгруппы группы , так что . Так как , то индукция для (II) проводится сразу.
Неравенства, полученные сдесь, отнюдь не являются наилучшими. Для нечетных их значительно можно усилить. Однако при теорему 2.13 улучшить нельзя.
Последнюю теорему можно применить для короткого доказательства утверждений и .
3 ГРУППА С НИЛЬПОТЕНТНЫМИ ДОБАВЛЕНИЯМИ К ПОДГРУППАМ
В настоящем главе описаны неразрешимые конечные группы с нильпотентными добавлениями к несверхразрешимым подгруппам. К этому классу групп относятся, в частности, и конечные группы с примарными индексами несверхразрешимых групп. Доказывается
Теорема 3.1. Конечная неразрешимая группа с нильпотентными добавлениями к несверхразрешимым подгруппам изоморфна или , где - нильпотентная группа, а и - простые числа.
Следствие 3.2. Конечная неразрешимая группа, в которой все подгруппы непримарного индекса сверхразрешимы, изоморфна или , где - -группа, либо , где - -группа.
Отметим, что конечные группы с нильпотентными подгруппами непримарного индекса изучены С. С. Левищенко [13]. Среди них нет неразрешимых групп.
Рассматриваются только конечные группы. Все встречающиеся обозначения и определения стандартны, их можно найти в [2,14].
Нам понадобится следующая
Лемма 3.3. Пусть в конечной группе каждая несверхразрешимая группа обладает нильпотентным добавлением. Тогда в любой подгруппе и в любой фактор-группе группы каждая несверхразрешимая подгруппа обладает нильпотентным добавлением.
Proof. Пусть - произвольная подгруппа конечной группы , и пусть - несверхразрешимая подгруппа из . В группе существует нильпотентное добавление к подгруппе . Поэтому , а . Теперь - нильпотентна, и к vможно взять нильпотентное добавление в подгруппе .
Пусть - нормальная в подгруппа, и - несверхразрешимая в подгруппа. Тогда несверхразрешима, и существует нильпотентная подгруппа такая, что . Теперь нильпотентна и , т. е. к подгруппе можно найти в нильпотентное добавление.
Докажем теорему.
Пример. Путь - конечная неразрешимая группа с нильпотентными добавлениями к несверхразрешимым подгруппам. Так как не -нильпотентна, то в существует -замкнутая подгруппа Шмидта , где - нормальная в силовская 2-подгруппа, подгруппа - циклическая [14,c. 434]. Поскольку не является сверхразрешимой, то существует нильпотентная подгруппа такая, что . С учётом чётности порядка из теоремы 2.8 [15] заключаем, что фактор-группа изоморфна или , где - некоторое простое число, а - наибольшая разрешимая нормальная в подгруппа. Кроме того,
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах