Нильпотентная длина конечных групп с известными добавлениями к максимальным подгруппам
Пусть теперь и По лемме 1.2(2) Так как то для утверждение уже доказано.
Сл
едствие 1.6. В разрешимой группе с единичной подгруппой Фраттини подгруппа Фиттинга есть прямое произведение минимальных нормальных подгрупп.
Теорема 1.7. Подгруппа Фиттинга совпадает с пересечением централизаторов главных факторов группы.
Proof. Пусть
По следствию 4.9, с. 35, подгруппа нормальна в . Если
главный ряд группы , то
нормальный ряд группы . Так как подгруппа содержится в каждой подгруппе , то
для . По теореме 4.10, с. 35, подгруппа нильпотентна, поэтому .
Проверим обратное включение. Пусть - главный фактор группы . Так как
то по лемме 4.11, с. 35, либо
либо
В первом случае , поэтому
Во втором случае из нильпотентности подгруппы по лемме 1.2 получаем, что
Снова . Таким образом, и .
Лемма 1.8. .
Proof. Пусть . Ясно, что и . Так как
то и изоморфна нормальной нильпотентной подгруппе группы . Поэтому
и .
Пусть - группа и пусть
Ясно, что
В разрешимой неединичной группе подгруппа Фиттинга отлична от единичной подгруппы по лемме 1.2. Поэтому для разрешимой группы существует натуральное такое, что .
Нильпотентной длиной разрешимой группы называют наименьшее , для которого . Нильпотентную длину разрешимой группы обозначают через . Таким образом, если группа разрешима и , то
где
Поэтому построенный ряд нормальный и его факторы нильпотентны.
Ясно, что тогда и только тогда, когда группа нильпотентна.
Пример 1.9. .
Непосредсвенно из определения нильпотентной длины вытекает
Лемма 1.10. Пусть - разрешимая группа. Тогда:
(1) ;
(2) .
Лемма 1.11. (1) Если - разрешимая группа, то длина любого нормального ряда группы с нильпотентными факторами не меньше, чем .
(2) Нильпотентная длина разрешимой группы совпадает с длиной самого короткого нормального ряда с нильпотентными факторами.
Proof. (1) Применим индукцию по порядку группы . Пусть
нормальный ряд группы с нильпотентными факторами. Так как - нормальная нильпотентная подгруппа группы , то и . Здесь . Факторгруппа имеет порядок меньше, чем порядок группы и обладает рядом
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах