Нильпотентная длина конечных групп с известными добавлениями к максимальным подгруппам

где - нильпотентная группа. Если

то в имеется несверхразрешимая подгруппа индекса . Так как этот индекс должен быть примарен, то или , поэтому или , а - либо -группа, либо -группа. Если

то в имеется несверхразрешимая подгруппа Шмидта порядка , а её индекс равен и должен быть примарен, т. е. должна быть -группой. Следствие доказано.

4 ИСПОЛЬЗУЕМЫЕ РЕЗУЛЬТАТЫ

Лемма 4.1. Пусть . Тогда:

(1) если , , то ;

(2) если , , то .

Следствие 4.2. Если нильпотентна, то нильпотентна.

Теорема 4.3. Пусть , и . Если нильпотентна, то нильпотентна.

Теорема 4.4. (1) Центр неединичной нильпотентной группы отличен от единицы и .

(2) В нильпотентной группе каждая собственная подгруппа отлична от своего нормализатора.

(3) В нильпотентной группе пересечение неединичной нормальной подгруппы с центром группы отлично от единицы и .

Лемма 4.5. Пусть - нормальная подгруппа группы . Тогда:

(1) если , то и ;

(2) если , то и ;

(3);

(4).

Теорема 4.6. Группа нильпотентна тогда и только тогда, когда её коммутант содержится в подгруппе Фраттини.

Теорема 4.7. Пусть . Тогда:

(1) ;

(2) ;

(3) если , то ;

(4) если и , то .

Лемма 4.8. Тогда и только тогда подгруппа является добавлением к нормальной подгруппе в группе , когда и .

Следствие 4.9. (1) Если - главный фактор конечной группы , то и

(2) Если - главный фактор порядка конечной группы , то - циклическая группа порядка, делящего .

Теорема 4.10. (1) Если существует натуральное число такое, что , то группа нильпотентна.

(2) Ступень нильпотентности нильпотентной группы есть наименьшее натуральное число , для которого

Лемма 4.11. Пусть . Тогда:

(1) если , то либо , либо и ;

(2) если абелева и для некоторой собственной подгруппы группы , то ;

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы