Нильпотентная длина конечных групп с известными добавлениями к максимальным подгруппам
Теорема E. Конечная неразрешимая группа с нильпотентными добавлениями к несверхразрешимым подгруппам изоморфна или , где - нильпотентная группа, а и - простые числа.
Также доказано следствие из этой теоремы.
Следствие. Конечная неразрешимая группа, в которой все подгруппы непримарного индекса сверхразрешимы, изоморфна или , где - -группа, либо , где - -группа.
1 ПОДГРУППА ФИТТИНГА И ЕЁ СВОЙСТВА
Произведение всех нормальных нильпотентных подгрупп группы называют подгруппой Фиттинга группы и обозначают через . Множество простых делителей порядка группы обозначается через а наибольшую нормальную -подгруппу группы - через .
Лемма 1.1. (1) - наибольшая нормальная нильпотентная подгруппа группы ;
(2) ;
(3) .
Proof. (1) Пусть и - нильпотентные нормальные подгруппы группы и пусть и - силовские -подгруппы из и . Так как , а , то по лемме 4.1, с. 35. Аналогично, , поэтому . Ясно, - -группа. Покажем, что она силовская в . Для этого вычислим ее индекс:
Так как числитель не делится на , то - силовская -подгруппа группы . Итак, произведение двух нормальных нильпотентных подгрупп есть нормальная нильпотентная подгруппа. Поэтому - наибольшая нормальная нильпотентная подгруппа группы .
(2) Ясно, что для всех , поэтому
Обратно, если - силовская -подгруппа группы , то и нормальна в , поэтому и
(3) Если , то и нильпотентна, поэтому по (1) и .
Лемма 1.2. (1) ; если разрешима и , то ;
(2)
(3) если , то ; если, кроме того, абелева, то
Proof. (1) Поскольку подгруппа Фраттини - нильпотентная нормальная подгруппа группы , то . Пусть - разрешимая неединичная группа. Тогда разрешима и неединична. Пусть
Так как - -группа для некоторого простого , то по следствию 4.2, с. 35, подгруппа нильпотентна и . Следовательно, .
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах