Доказательство утверждения, частным случаем которого является великая теорема Ферма
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
Случай 11
(16)
(17)
height=21 src="images/referats/7515/image235.png">(18)
(19´)
Из (16) и (17) имеем:
Учитывая (14) и (19´), можно получить разность другим способом:
- => .
Следовательно, =-=> 2t = - 4r ( ≠ 0, т.к. в (26´´) с ≠ b) => t = -2r (32´) => в (16) и (17) cи b – четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
Случай 12
(16´)
(17´)
(18´)
(19),
т.е. по сравнению с предыдущим случаем 11 здесь знаки перед скобками противоположные, а потому (по понятным причинам) результат будет таким же, что и в случае 11.
Действительно, из (16´) и (17´) имеем:
Учитывая (14) и (19), можно получить разность другим способом:
=> .
Следовательно, -==> 2t = - 4r (≠ 0, т.к. в (26´´) с ≠ b) => t = -2r (32´) => в (16) и (17) cи b – четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
*******
Случай 13
(16)
(17)
(18´)
(19´)
Из (16) и (17) имеем:
Учитывая (14) и (19´), можно получить разность другим способом:
- => .
Следовательно, =-=> 2t = - 4r (≠ 0, т.к. в (26´´) с ≠ b) => t = -2r (32´) => в (16) и (17) cи b – четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
********
Случай 14
(16´)
(17´)
(18)
(19),
т.е. по сравнению с предыдущим случаем 13 здесь знаки перед скобками противоположные, а потому (по понятным причинам) результат будет таким же, что и в случае 13.
Действительно, из (16´) и (17´) имеем:
Учитывая (14) и (19), можно получить разность другим способом:
=> .
Следовательно, -==> 2t = - 4r (≠ 0, т.к. в (26´´) с ≠ b) => t = -2r (32´) => в (16) и (17) cи b – четные, чего не должно быть.
Мы пришли к противоречию с нашим предположением о существовании у уравнения (1) попарно взаимно простых целых решений.
***********
Вывод.
1. Таким образом, случаи 9,…, 14 новых возможных решений уравнения (15) не выявили.
2. Условие 1 (продолжение) нами полностью рассмотрено.
**********
Условие 2 (продолжение).
Ранее мы отмечали, что уравнение (15) симметрично для с и b, поэтому с и bмогут меняться своими выражениями (Cи В). Это свойство нами было названо «новым свойством ».
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах