Доказательство утверждения, частным случаем которого является великая теорема Ферма

(30´), => c =(30´), (29´)

(28´), => b = th=15 height=16 src="images/referats/7515/image249.png">1 (28´), (24´), где

- взаимно простые нечетные целые числа.

Случай 3

(12)

(13′)

(14)

(15′) ,

которые также являются решениями уравнения

(11).

Тогда сумма имеет вид:

Учитывая (10) и (15), можно получить разность :

-=> .

Выразим из (31) и (16) :

=> (32)

=> (33).

По условию должны быть взаимно простыми целыми нечетными числами, поэтому их общий множитель .

Т.о., имеют вид:

(34), (35), а их сумма .

Т.к. из (4) c2 + b2 = 2 β, то и .

Из (15´) с учетом (20) выразим :

, т.е. (24´).

Т.о., , ,

где, т.е.

,

,

выражения которых, с учетом (24´), полностью совпадают с (6) и (7), т. е. с уравнениями

Теперь, с учетом (13′) и (14), найдем сумму :

т.к. , т.е. .

(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (20). В последующих действиях мы это учтем.)

Теперь, учитывая (23), получим значение для b2:

,т.к. из (20) получается

.

Итак, (28), что для целых чисел неприемлемо.

Этот случай нас не интересует.

*******

Тем не менее продолжим, т.к. результат, который мы получим, в дальнейшем нам пригодится.

Учитывая (26´), получим => (29´´).

Теперь, с учетом (29´´), можно получить окончательное выражение для с 2 (из (25´)):

, т.е. (30´´).

Таким образом, уравнение (11), решениями которого являются (12), (13′), (14) и (15´), в конечном счете имеет следующие решения:

(30´´),,

(28), (24´),

где - взаимно простые нечетные целые числа.

***********

Случай 4

Нетрудно догадаться, что если бы у уравнения (11) были бы решения, противоположные по знаку с решениями (12), (13′), (14) и (15´), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (30´´), (28), (29´´) и (24´), т.е.

(30´´´), => (30´´´), (29´´´), (28´), =>b= (28´), (24),

где - взаимно простые нечетные целые числа.

*******

Подведем некоторый итог. Нами рассмотрено 4 случая решений уравнения (11).

Обозначим снова следующие выражения буквами С, В, N, К:

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы