Доказательство утверждения, частным случаем которого является великая теорема Ферма
(30´), => c =(30´), (29´)
(28´), => b = th=15 height=16 src="images/referats/7515/image249.png">1 (28´), (24´), где
- взаимно простые нечетные целые числа.
Случай 3
(12)
(13′)
(14)
(15′) ,
которые также являются решениями уравнения
(11).
Тогда сумма имеет вид:
Учитывая (10) и (15), можно получить разность :
-=> .
Выразим из (31) и (16) :
=> (32)
=> (33).
По условию должны быть взаимно простыми целыми нечетными числами, поэтому их общий множитель .
Т.о., имеют вид:
(34), (35), а их сумма .
Т.к. из (4) c2 + b2 = 2 β, то и .
Из (15´) с учетом (20) выразим :
, т.е. (24´).
Т.о., , ,
где, т.е.
,
,
выражения которых, с учетом (24´), полностью совпадают с (6) и (7), т. е. с уравнениями
Теперь, с учетом (13′) и (14), найдем сумму :
т.к. , т.е. .
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (20). В последующих действиях мы это учтем.)
Теперь, учитывая (23), получим значение для b2:
,т.к. из (20) получается
.
Итак, (28), что для целых чисел неприемлемо.
Этот случай нас не интересует.
*******
Тем не менее продолжим, т.к. результат, который мы получим, в дальнейшем нам пригодится.
Учитывая (26´), получим => (29´´).
Теперь, с учетом (29´´), можно получить окончательное выражение для с 2 (из (25´)):
, т.е. (30´´).
Таким образом, уравнение (11), решениями которого являются (12), (13′), (14) и (15´), в конечном счете имеет следующие решения:
(30´´),,
(28), (24´),
где - взаимно простые нечетные целые числа.
***********
Случай 4
Нетрудно догадаться, что если бы у уравнения (11) были бы решения, противоположные по знаку с решениями (12), (13′), (14) и (15´), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (30´´), (28), (29´´) и (24´), т.е.
(30´´´), => (30´´´), (29´´´), (28´), =>b= (28´), (24),
где - взаимно простые нечетные целые числа.
*******
Подведем некоторый итог. Нами рассмотрено 4 случая решений уравнения (11).
Обозначим снова следующие выражения буквами С, В, N, К:
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах