Доказательство утверждения, частным случаем которого является великая теорема Ферма
Выразим из (25) и (26) :
=>
=> .
По условию =35 height=19 src="images/referats/7515/image113.png">должны быть взаимно простыми целыми числами, поэтому их общий множитель .
Т.о., имеют вид:
, , а их сумма .
Т.к. из (8) , то => .
Из (19) с учетом (29) выразим :
, т.е. .
Т.о., , , т.е.
,
выражения которых, с учетом (33), полностью совпадают с (9) и (10).
Теперь, с учетом (17′) и (18´), найдем разность :
т.к. , т.е. (36´).
(Здесь чередование «плюса» и «минуса» такое же, как и у единицы в (29). В последующих действиях мы это учтем).
Теперь, учитывая (32), найдем разность (b-n)-n:
где .
Т.к. b + c =2n, то b-2n = b - (b + c) = - c = -1 => c= 1 (40).
Учитывая (34), получим => (38´).
Теперь, с учетом (38´), можно получить окончательное выражение для b (из (35)):
, т.е.(41).
Таким образом, уравнение (15), решениями которого являются (16), (17′), (18´) и (19), в конечном счете, имеет следующие решения:
(41), , где - взаимно простые нечетные целые (40),(38´), числа
*******
Случай 6
Нетрудно догадаться, что если бы у уравнения (15) были бы решения, противоположные по знаку с решениями (16), (17′), (18´) и (19), мы бы получили, в конечном итоге, решения, противоположные по знаку решениям (40), (41), (38´´) и (33), т.е.
(40´),(38),
(41´), (33´), где - взаимно простые целые нечетные числа.
*******
Случай7
(16)
(17´)
(18´)
(19´)
Тогда сумма имеет вид:
Учитывая (14) и (19´), можно получить разность :
=> (26´).
Выразим из (25) и (26´) :
=>
=> .
По условию должны быть взаимно простыми целыми числами, поэтому их общий множитель .
Т.о., имеют вид:
(30´), (31´), а их сумма .
Т.к. из (8) , то => .
Из (19´), с учетом (29), выразим :
, т.е. (33´).
Т.о., , , т.е.
(34´),
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах